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The phenotype-linked fertility hypothesis predicts that male sexual ornaments signal fertilizing efficiency
and that the coevolution of male ornaments and female preference for such ornaments is driven by female
pursuit of fertility benefits. In addition, directional testicular asymmetry frequently observed in birds has
been suggested to reflect fertilizing efficiency and to covary with ornament expression. However, the idea
of a phenotypic relationship between male ornaments and fertilizing efficiency is often tested in popu-
lations where environmental effects mask the underlying genetic associations between ornaments and
fertilizing efficiency implied by this idea. Here, we adopt a novel design, which increases genetic diversity
through the crossing of two divergent populations while controlling for environmental effects, to test: (i)
the phenotypic relationship between male ornaments and both, gonadal (testicular mass) and gametic
(sperm quality) components of fertilizing efficiency; and (ii) the extent to which these components are
phenotypically integrated in the fowl, Gallus gallus. We show that consistent with theory, the testosterone-
dependent expression of a male ornament, the comb, predicted testicular mass. However, despite their
functional inter-dependence, testicular mass and sperm quality were not phenotypically integrated. Con-
sistent with this result, males of one parental population invested more in testicular and comb mass,
whereas males of the other parental population had higher sperm quality. We found no evidence that
directional testicular asymmetry covaried with ornament expression. These results shed new light on the
evolutionary relationship between male fertilizing efficiency and ornaments. Although testosterone-
dependent ornaments may covary with testicular mass and thus reflect sperm production rate, the lack
of phenotypic integration between gonadal and gametic traits reveals that the expression of an ornament
is unlikely to reflect the overall fertilizing efficiency of a male.

Keywords: female preference; Gallus; sperm quality genes; phenotypic integration; sexual ornaments;

testicular asymmetry

1. INTRODUCTION

Professor Mantegazza is inclined to believe (‘Lettera a
Carlo Darwin’, Archivio per I’Anthropologia, 1871, p.
306) that the bright colours, common in so many male
animals, are due to the presence and retention by them
of the spermatic fluid; but this can hardly be the case...

(Darwin 1882, p. 224)

This quote shows that a link between the sexual orna-
ments of a male and the quality of his semen had been
already hypothesized when Darwin formulated his theory
of sexual selection. The idea that the display of sexual
ornaments signals male fertilizing efficiency was explicitly
proposed by Trivers (1972; see also Williams 1978), and
generated much interest when it became clear that wide-
spread sexual promiscuity renders male fertilizing
efficiency an important component of fitness and a target
of sexual selection (Birkhead & Pizzari 2002). The pheno-
type-linked fertility hypothesis (Sheldon 1994) predicts
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that male fertilizing efficiency is reflected by the pheno-
typic expression of male ornaments, allowing female birds
to reduce the risk of infertility by selecting relatively fertile
copulation partners. Similarly, Meller & Birkhead (1994)
argued that plumage ornamentation in male birds has
evolved as a response to female selection of extra-pair
partners. Finally, Meller (1994) added a corollary to the
phenotype-linked hypothesis by suggesting that the degree
of testicular asymmetry, often observed in birds
(Friedmann 1927; Lake 1981), reflects male fertilizing
efficiency and covaries with the expression of sexual orna-
ments. More recently, several studies have suggested dif-
ferent physiological mechanisms through which ornament
expression may covary with fertilizing efficiency
(Folstad & Skarstein 1997; Hillgarth er al. 1997; Blount
et al. 2001).

The underlying idea of the phenotype-linked fertility
hypothesis is that female preference for male ornaments
has been directly selected owing to fertility benefits to
females and indirectly owing to superior fertilizing
efficiency in sons and adaptive partner choice in daughters
(Pizzari & Birkhead 2002). This idea implies that the
covariance between male ornaments and fertilizing
efficiency is condition dependent (Sheldon 1994). In
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addition, for male ornaments to evolve in response to
female pursuit of fertility benefits (Meoller & Birkhead
1994), additive genetic variation must underlie the pheno-
typic relationship between male ornaments and fertility.
Testing the phenotype-linked fertility hypothesis is crucial
to understanding the evolution of male ornaments and
female preference. For example, by obtaining high-quality
inseminations, females may minimize the number of costly
copulations (Pizzari 2002). However, although it has
received considerable experimental attention, the pheno-
type-linked fertility hypothesis has often been tested in
natural populations (but see Birkhead er al. 1995; Mat-
thews ez al. 1997), with ambiguous results (reviewed in
Pizzari & Birkhead 2002; Birkhead & Pizzari 2002). This
is not surprising considering that in natural populations
environmental effects mask genetic effects, because:

(i) environmental variables such as male age, condition
and copulation history are difficult to measure and
control; and

(i) natural and sexual selection are expected to reduce
additive genetic variance in ornaments and fertilizing
efficiency (although the extent to which this happens
remains debatable).

Here, we adopt a novel experimental approach, increasing
genetic variation and reducing environmental variation, to
test whether the expression of male ornaments reflects
male fertilizing efficiency in the fowl, Gallus gallus.

The mating system of the red jungle fowl, Gallus gallus
ssp., and that of feral populations of its domesticated
descendant, the domestic fowl, G. g. domesticus, is charac-
terized by high levels of sexual promiscuity exposing males
to intense sexual selection both pre- and post-insemi-
nation (McBride ez al. 1969; Pizzari er al. 2002). Consist-
ent with this is the fact that male fowl display multiple
ornaments (Zuk ez al. 1990) and relatively high investment
in gonadal mass (Pizzari 1999). In the fowl, male fertiliz-
ing efficiency is determined largely by a gonadal and a
gametic factor:

(i) the number of sperm inseminated by a male into a
female, which depends on the rate of sperm pro-
duction and, ultimately, testicular mass (Burrows &
Titus 1939; Parker ez al. 1942; Amann 1970; Lake
1971; Martin & Dziuk 1977; De Reviers & Williams
1984); and

(ii) the quality of inseminated ejaculates (Froman ez al
2002), which depends on the metabolic performance
and ATP content of spermatozoa (Etches 1996;
Cummins 1998; Froman ez al. 1999).

Both (i) and (ii) are important determinants of the fertiliz-
ing efficiency of an insemination (Froman ez al. 2002).
The extent to which ornaments predict variation in overall
male fertilizing efficiency in the fowl depends on the rela-
tive importance of (i) and (ii), and on whether (i) and (ii)
are phenotypically integrated.

After domestication, some fowl populations have under-
gone an intense process of artificial selection for egg pro-
duction in which the number of males inseminating
females has been minimized, often with the help of arti-
ficial insemination (Etches 1996), thus relaxing (or even
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preventing) sexual selection. In addition, consistent arti-
ficial selection for egg production is likely to accumulate
alleles allowing females to sustain higher reproductive
investment. Because the functions of the two sexes are
typically divergent and yet many genes are bisexually
expressed (Rice 1984; Chippindale er al. 2001), artificial
selection for egg production may favour female-beneficial
genetic combinations that, when expressed in males, have
potentially deleterious effects on ornament expression
and/or fertilizing efficiency.

We studied males of the second (F,) generation of the
inter-cross between a red jungle fowl population, where
male investment in ornaments and fertilizing efficiency is
favoured by sexual selection, and a domestic strain artifici-
ally selected for egg production. Segregation of wild and
domestic alleles at the F, generation of the crossing reveals
the genetic variation underlying both male ornaments and
fertilizing efficiency (Andersson 2001). In addition, we
minimized environmental variation by standardizing the
age at which males were studied and environmental con-
ditions to which males had been exposed from incubation.

Our aim in this study was to test the following:

(i) the relationship between male ornamentation and
gonadal and gametic components of fertilizing
efficiency;

(i1) the relationship between gonadal and gametic
components of fertilizing efficiency; and

(iii) the hypothesis that testicular asymmetry covaries
with ornament expression (Mgller 1994).

2. MATERIAL AND METHODS

(a) Study population

We used the F, generation of an inter-cross between a red
jungle fowl population housed at the research station of Stock-
holm University (Sweden), and a Scandinavian domestic strain
of White Leghorn (SLU13), which has a long history of artificial
selection for egg mass (Liljedahl ez al. 1979), and maintained
at the Swedish University of Agricultural Sciences (Skara; see
Carlborg et al. (2003) for details). Birds from each batch were
hatched and raised together on floor in indoor pens (3 m X 3 m)
in mixed sex groups of about 40 animals under standardized
housing conditions with ad Lbitum food and water. We studied
44 males from the F, batch hatched on December 1999 (n = 247
at hatching).

(b) Phenotypic measurements

Forty-four males were kept isolated from females two months
before the study to ensure sexual rest and the replenishment of
their sperm reserves. In June 2002 males were housed in single-
sex outdoor pens at Tovetorp Research Station, Stockholm Uni-
versity, for 3 days when one sperm sample was manually col-
lected (Burrows & Quinn 1937) from 38 of them. Each semen
sample was diluted in Gold’s Eagle Growth medium to a con-
centration of 2 X 10° sperm ml~!. Thirty microlitres of this sol-
ution were mounted on a microscope slide and video-recorded
with a CCD KP-MI1E/K Hitachi Denshi Ltd camera (Japan)
connected to a BH-2 Olympus microscope (Japan) with dark
field optics at a magnification of x20. We quantified sperm qual-
ity by measuring the performance of individual motile sperm by
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Table 1. Dissection of phenotypic covariance in (a) mean tes-
ticular mass and sperm quality, (b)) VSL and (¢) VAP.

covariate d.f. F P

(@) mean testicular mass and sperm quality

comb mass 1,34 7.16 0.01

spur length 1,34 0.01 0.92

body mass 1,34 2.91 0.097
(b) VSL

comb mass 1,34 0.76 0.39

spur length 1,34 0.93 0.34

body mass 1,34 0.89 0.35
(c) VAP

comb mass 1,34 1.12 0.30

spur length 1,34 1.61 0.21

body mass 1,34 1.59 0.22
adjusted R? 0.29

using computer-assisted sperm (Hobson Sperm

Tracker) in two ways as follows:

analysis

(1) average path velocity (VAP, um s~ !); and
(i) straight line velocity (VSL, pms™1).

VAP was calculated by dividing the smoothed distance of each
sperm track by the time taken to cover that distance. VSL was
calculated by dividing the straight line distance between the start
and endpoint of the track, by the time taken to cover that dis-
tance. For each male, 100 sperm were individually tracked
within 5 minutes of recording, and mean VAP and VSL were
obtained. VAP and VSL are positively correlated with fertility
in several taxa (Liu ez al. 1991; Moore & Akhondi 1996; Hirano
et al. 2001; Tash er al. 2001; Al-Qarawi ez al. 2002; Kupri-
yanova & Havenhand 2002; see also Birkhead er al. 1995)
including the fowl (Wishart & Palmer 1986), and with sperm
mobility (Donoghue et al. 1998; Froman & Feltmann 2000;
King er al. 2000), another important predictor of fertilizing
efficiency in Galliformes (see Froman er al. 1997; Donoghue et
al. 1998; Birkhead er al. 1999; Froman et al. 2002; see also Don-
oghue 1999).

The day after sperm collection males were killed, weighed to
the nearest 10 g, and dissected. Both testicles and the comb were
removed and weighed to the 0.01 g, in all 44 males. The length
of both spurs was measured as the chord connecting the base
and the tip of the spur for the 38 males for which sperm quality
was measured. We chose male comb size because female red
jungle fowl prefer to copulate with large-combed males (Zuk ez
al. 1990; Ligon & Zwartjes 1995). In addition, male comb size
may reflect male condition (Zuk ez al. 1995; Verhulst ez al. 1999)
and male social dominance (Ottinger 1983; Sullivan 1991;
Parker er al. 2002), another trait which female fowl favour in
their copulation partners (Pizzari & Birkhead 2000; Johnsen er
al. 2001; Pizzari 2001). Spur length was chosen because it may
reflect male fighting ability and influence female choice in some
Galliformes (see Davison 1985; Von Schantz et al. 1989;
Mateos & Carranza 1996; Badyaev er al. 1998), although the
functional significance of male spurs remains unresolved in the
fowl (see Zuk et al. 1990).

This experimental design assumes different levels of invest-
ment in male ornaments and fertilizing efficiency in the two par-
ental populations. We tested this by examining the somatic
investment in both mean testicular mass and comb mass in adult
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Figure 1. Phenotypic relationship between male comb and
mean testicular mass (see table la).

(ca. 1year old) males of both parental populations (white
leghorn and red jungle fowl). In addition, we analysed sperm
quality (VAP) in white leghorn and red jungle fowl males. Par-
ental males were kept at the same site under the same environ-
mental conditions, with the exception of the white leghorn males
which we used to analyse sperm quality and which were kept in
single cages at the Swedish University of Agricultural Sciences
(Uppsala).

(¢) Analysis

First, we tested whether comb mass and mean spur length
((left + right) X 0.5) explained a significant proportion of the
variance in mean testicular mass ((left + right) X 0.5) and in
sperm quality (VSL, VAP) by using an analysis of covariance
(ANCOVA). To control for allometric effects we also entered
body mass as a covariate. All variables were checked for nor-
mality. The distribution of testicular mass was normalized by
log transformation. In addition, we tested differences in relative
mean testicular mass and relative comb mass (i.e. standardized
over body mass) between parental populations through Mann—
Whitney tests, and differences in VAP through a one-way
ANOVA with population as a fixed effect.

Second, we tested the relationship between mean testicular
mass and sperm quality (VSL, VAP) using ANCOVA.

Finally, we tested the hypothesis of Megller (1994) that the
typically smaller right testis enlarges to compensate for any con-
dition-dependent deficiency in the left testis. This hypothesis
predicts:

(1) a negative relationship between relative testicular
((left — right)/(left + right) X 0.5) asymmetry and right
testis mass; and

(i) a positive relationship between directional (left—right)
asymmetry and ornament expression.

We tested (i) using Spearman rank correlation, and (ii) through
a multiple stepwise regression with directional testicular asym-
metry as the dependent variable and comb mass, mean spur
length and body mass as the independent predictors.
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Figure 2. Somatic investment in mean testicular mass (mean
testis mass per body mass) and comb mass (comb mass per
body mass) in adult male white leghorn (WL) and red jungle
fowl (R]); (Mann—Whitney: relative testis mass, U= 5.00,
p=0.04, ny; = ng; = 6; relative comb mass, U= 0.00,
»=0.00, ny =ng;=5).

Table 2. Phenotypic covariance between in mean testicular
mass and sperm quality: (@) VSL and (b) VAP.

covariate d.f. F p
(a) VSL
mean testis mass 1,35 0.43 0.52
body mass 1,35 0.00 0.99
(b) VAP
mean testis mass 1,35 0.31 0.58
body mass 1,35 0.03 0.86
adjusted R? 0.04
3. RESULTS

Consistent with the phenotype-linked fertility hypoth-
esis, male comb mass was a significant predictor of mean
testicular mass (table 1; figure 1). In addition, consistent
with the idea that the observed covariance in testicular
mass and comb mass in the F, hybrids was mainly genetic,
we found a significant difference in gonadal and comb
investment between the parental populations. Males of the
domestic strain invested significantly more in both, tes-
ticular and comb mass (figure 2). Mean spur length, on
the other hand, did not covary significantly with mean tes-
ticular mass (table 1). Similarly, variation in sperm quality
(VSL, VAP) was not explained by the expression of either
male sexual ornaments, or by body mass (table 1).

Mean testicular mass and sperm quality did not covary
(table 2; figure 3a,b), indicating that these fertility traits
were not phenotypically integrated. Consistent with the
idea that in the fowl testicular mass and sperm quality are
genetically determined but not genetically integrated with
each other, we found that males of the parental white
leghorn population produced sperm of significantly lower
quality than those produced by males of the red jungle
fowl parental population, with the F, hybrids producing
sperm of intermediate quality (figure 4).
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Figure 3. Phenotypic relationship between mean testicular
mass and two measures of sperm quality (a) VSL and (b)
VAP.
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Figure 4. Mean sperm quality, measured as VAP in adult
male white leghorn (WL), F, hybrids (F2), and red jungle
fowl (R]). There was an overall population effect

(Fa45 = 70.09, p < 0.0001, nyy =74, ng, = 38, ngy = 37),
mainly because of the sperm quality of WL males being
significantly lower than that of both, F2 and RJ males (mean
difference + s.e.m., 35.18 + 3.20, post hoc tests: Tukey
Honestly Significant Difference, THSD, p < 0.0001,
Dunnett’s T3, p < 0.0001). Similarly, there was a tendency
for sperm quality to be higher in RJ than in F2

(10.07 £3.68, THSD, p=0.017, Dunnett’s T3, p=0.084).
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We found no support for the hypothesis of Maller
(1994). Although the left testis was on average larger, this
difference was not significant (mean*s.e.m., left
5.32+£0.34; right 5.22+0.27g, Wilcoxon test:
Z=-0.035, p=0.97, n=44), indicating no overall direc-
tional asymmetry. Contrary to the prediction that the right
testis develops to compensate for the left, we found no
correlation between relative testicular asymmetry and
right testis mass (= —0.09 p=0.54, n=44). Further-
more, we found no evidence consistent with the prediction
that directional testicular asymmetry covaries with orna-
ment expression, neither comb nor mean spur length
explained variance in directional testicular asymmetry
(none of the independent variables had a significant effect
on variance in directional asymmetry and was included in
the model, n=44). Finally, there was no correlation
between directional testicular asymmetry and mean testis
mass (©*=0.15, p=0.35, n=44), suggesting that direc-
tional testicular asymmetry is unlikely to reflect the rate
of sperm production.

4. DISCUSSION

The present study shows that, consistent with the
phenotype-linked fertility hypothesis, the expression of a
sexual ornament, the comb, reflects testicular mass and
thus the rate of sperm production in male fowl. However,
the gametic component of fertilizing efficiency, sperm
quality, was not predicted by ornament expression and
was independent of testicular mass.

These results suggest that male fertilizing efficiency con-
sists of two independent components in the fowl. One,
gonadal investment, is predicted by the phenotypic
expression of a sexual ornament. The link between testicu-
lar and comb mass is likely to be steroid mediated
(Astiningsih & Rogers 1996). In birds and other ver-
tebrates, spermatogenesis occurs in the seminiferous
tubules of the testis, where spermatocytes develop into
haploid spermatozoa through two meiotic divisions
(Johnson 1991; Etches 1996). Sertoli cells, in the adlumi-
nal region of the tubules, provide the microenvironment
for spermatogenesis by ensuring high levels of testicular
steroid hormones through the release of androgen-binding
protein (Kirby & Froman 2000). Testicular ability to pro-
duce sperm is associated with the proliferation of Sertoli
cells at the onset of sexual maturity in the male fowl
(Etches 1996), and because the number of Sertoli cells is
proportional to testicular size, larger testes produce more
sperm (Burrows & Titus 1939; Amann 1970; Martin &
Dziuk 1977; De Reviers & Williams 1984).

Testosterone is produced by the Leydig cells, which in
the fowl are in the interstitial tissue of the testis (Kirby &
Froman 2000). In mammals, Leydig cells contribute to
testicular mass, and the number of Leydig cells is posi-
tively correlated with sperm production (Johnson 1991).
This also appears to be the case in birds where testicular
mass is positively correlated with testosterone production
both seasonally (Young ez al. 2001) and through ontogeny
(Schwabl & Farner 1989; Cecil & Bakst 1991; Deviche
et al. 2000). More importantly, castration in male fowl
interrupts the negative feedback loop that regulates levels
of luteinizing hormone through testosterone inhibition of
the gonadotrophin-releasing hormone (Scanes ez al. 1984;

Proc. R. Soc. Lond. B (2004)

Etches 1996), demonstrating the causal link between
testes and testosterone production. Testosterone is the
primary androgen in adult male fowl (Bahr & Johnson
1991; Etches 1996) with a crucial influence on male sex-
ual and competitive behaviour (Allee ez al. 1939; Ottinger
1983; Bahr & Johnson 1991) and on comb size (Zuk er
al. 1995; Fennell ez al. 1996; Parker er al. 2002). Comb
size may thus reflect male social status (Parker ez al. 2002)
and steroid-mediated immune responses (Zuk ez al. 1995;
Fennell er al. 1996; Verhulst ez al. 1999). However, the
relationship between comb and testicular mass in male
fowl has been controversial. For example, Von Schantz et
al. (1995) found that artificial selection for increased male
comb size in a domestic fowl strain originally selected for
egg production resulted in a weak negative correlation
between male comb size and both testicular mass and spur
length. Alternatively, McGary er al. (2002) found that
male comb size was positively correlated with relative tes-
ticular mass in one of two domestic broiler strains (i.e.
selected for meat production). However, different artificial
selection regimes have resulted in divergent mechanisms
of testosterone modulation of comb expression in different
strains (Dorfman & Dorfman 1948; Astiningsih & Rogers
1996), which are difficult to interpret at an evolutionary
level. A more promising approach is to compare artificially
selected strains with natural populations (Astiningsih &
Rogers 1996). By adopting this design, the present study
provides evidence consistent with the idea that genetic
combinations coding for relatively high gonadal invest-
ment are also associated with superior investment in
comb expression.

A second component of fertilizing efficiency, the motile
quality of ejaculated spermatozoa, appears to be inde-
pendent from testicular mass. Sperm quality depends ulti-
mately on the metabolic performance of mature
spermatozoa, which is determined by mitochondrial ATP
synthetic ability (Wishart & Palmer 1986; Cummins 1998;
Froman er al. 1999, 2002). Hence, sperm quality may be
less dependent on the testicular steroid milieu during sper-
matogenesis and thus less likely to covary with comb mass.
The fact that testicular mass and sperm quality are not
phenotypically integrated, despite their functional interde-
pendence (Froman et al 2002), may therefore be
explained by the fact that sperm quality is particularly vul-
nerable to the performance of maternally transmitted
mitochondrial genes (Cummins 1998; Pizzari & Birkhead
2002), which may prevent correlational directional selec-
tion on testicular mass and sperm quality (Froman ez al.
2002; Pizzari & Birkhead 2002). Earlier work suggests that
variance in sperm quality in the fowl is determined by both
mitochondrial and nuclear genes (Froman er al. 2002).
Our breeding design reduced the effect of mitochondrial
genes on sperm quality because only white leghorn
females contributed to the F, generation (Carlborg ez al.
2003), resulting in all the F, males sharing leghorn mito-
chondrial genes. The result that the F, males produced
sperm of intermediate quality strongly suggests that
nuclear genes are also importantly involved in determining
variation in sperm quality in the fowl. This result is also
consistent with the idea that the relaxation of sexual selec-
tion through domestication and artificial selection for
female reproductive traits (e.g. egg production) has
resulted in the accumulation of genetic variants with
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detrimental effects on some male fertility traits. The
mechanisms through which mitochondrial and nuclear
genes interact to determine sperm quality remains to be
investigated (Cummins 1998). Similarly, mitochondrial
genes that affect sperm quality may also mediate a pheno-
typic relationship between some ornaments and sperm
quality. However, our experimental design is likely to have
reduced mitochondrial genetic variation in the F, birds,
and thus the possibility of detecting potential relationships
between ornaments and sperm quality mediated by mito-
chondrial genes. The different housing conditions in
which the males of the two parental lines for which sperm
quality was measured (see §2) may also contribute to
explain the observed line difference. However, this seems
unlikely because:

(1) a line difference was also observed in testicular and
comb mass, which were measured in male leghorn
and red jungle fowl kept in similar conditions; and

(i) F, males had higher sperm quality than male red
jungle fowl although both were housed in similar
conditions.

We found no support for the idea that the degree of
testicular asymmetry covaries with ornament expression
(Mgller 1994). First, we found no evidence of directional
testicular asymmetry, as found in previous studies of red
jungle fowl (Kimball ez al. 1997) and wild passerines
(Merilda & Sheldon 1999). Second, the lack of covariance
between directional testicular asymmetry and male orna-
ments is consistent with findings in a captive population
of red jungle fowl (Kimball er al. 1997) and in other spec-
ies of wild birds (Birkhead er al. 1997, 1998). Further-
more, both testes are known to be functional in the fowl
(Johnson 1976; Etches 1996), and both the left and right
vasa deferentia eject semen (T. Pizzari, P. Jensen and
C. K. Cornwallis, personal observations; Etches 1996, fig.
8.8D, p. 220) during manual collection of semen samples.
This indicates that, at least during manually induced
ejaculation, both testes contribute to the ejaculate. This
observation seems to contradict the assumption that only
the left testis typically contributes to an ejaculate, upon
which the hypothesis of Meller (1994) of functional tes-
ticular asymmetry rests. A non-functional explanation sug-
gests that directional testicular asymmetry in male birds is
a genetic correlate of the more pronounced female ovarian
asymmetry (Stanley & Witschi 1940). Clearly, more work
is needed to understand the functional significance of
avian testicular asymmetry.

In conclusion, testicular mass and sperm production
may be more likely to be predicted by steroid-dependent
phenotypic traits than sperm quality. This may contribute
to explain female preference for steroid-dependent male
ornaments in the fowl (Zuk er al. 1990) and other Galli-
formes (Hagelin & Ligon 2002). However, the extent to
which female preference for large-combed males has been
selected by direct and indirect fertility benefits, and by
other effects associated with high testosterone levels
(social status) remains unclear. In addition, the number
of sperm inseminated by a male into a female is determ-
ined by multiple contingent social cues in many taxa
(Wedell er al. 2002) including the fowl (Pizzari er al

Proc. R. Soc. Lond. B (2004)

2003), suggesting that ejaculate size is not entirely pre-
dicted by the expression of male ornaments.
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