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Summary

The evolution of multicellular organisms represents one of

approximately eight major evolutionary transitions that
have occurred on earth [1–4]. The major challenge raised

by this transition is to explain why single cells should join
together and become mutually dependent, in a way that

leads to a more complex multicellular life form that can
only replicate as a whole. It has been argued that a high ge-

netic relatedness (r) between cells played a pivotal role in the
evolutionary transition from single-celled to multicellular

organisms, because it leads to reduced conflict and an align-
ment of interests between cells [1–17]. We tested this hy-

pothesis with a comparative study, comparing the form of
multicellularity in species where groups are clonal (r = 1) to

species where groups are potentially nonclonal (r % 1). We
found that species with clonal group formation were more

likely to have undergone the major evolutionary transition
to obligate multicellularity and had more cell types, a higher

likelihood of sterile cells, and a trend toward higher numbers
of cells in a group. More generally, our results unify the role

of group formation and genetic relatedness across multiple
evolutionary transitions and provide an unmistakable foot-

print of how natural selection has shaped the evolution of
life [1].

Results and Discussion

The evolution of life on earth, from the simplest replicatingmol-
ecules to complex animal societies, has involved approxi-
mately eight major evolutionary transitions in individuality
[2–4, 18]. In each of these transitions, a group of individuals
that could previously replicate independently joins together
to form a new, more complex life form that can only replicate
as a whole. For example, genes come together to form ge-
nomes, cells join together to form multicellular organisms,
and multicellular organisms join together to form eusocial so-
cieties. Themajor challenge raised by each of these transitions
is to explain why individuals should join together and become
mutually dependent in a way that leads to a more complex in-
dividual [2–4, 18].

Here, we use a phylogenetically based [19] comparative
study to test how the relatedness between interacting cells
influenced both the likelihood of the major evolutionary transi-
tion to obligate multicellularity and the level of sociality in
multicellular groups. We obtained data on 168 species, with
representatives from all multicellular lineages except diatoms
and charophyte algae (Figure 1; Figure S1 available online). We
used life-history data on how groups form to infer relatedness.
*Correspondence: stuart.west@zoo.ox.ac.uk
Specifically, when groups form by cells remaining with their
parents, then groups are clonal (r = 1; 149 species). This
usually involves the group going through a single-celled (uni-
cellular) stage [10, 11]. In contrast, if groups form by cells
aggregating together, then relatedness could be anything
from zero to one (r % 1) but is likely to be nonclonal (r < 1; 19
species) [20].
Transitions to Obligate Multicellularity
We first examined whether relatedness influenced the likeli-
hood that groups underwent the transition to obligatemulticel-
lularity. Our distinction here is between obligately multicellular
species, which can only complete their life cycle as a multicel-
lular organism, and facultatively multicellular species, which
are able to complete their life cycle as unicells and only
become multicellular under certain environmental conditions.
For example, Dictyostelium species can remain in their unicel-
lular state for many generations, without the need to form a
multicellular fruiting body, which they do only under certain
harsh conditions, and so we classify them as facultatively
multicellular. In contrast, in mammals, the unicellular stage is
finite and must always ultimately lead to the multicellular
stage, and so we classify them as obligately multicellular.
Consequently, we are focusing on whether one of the key re-
quirements for a major evolutionary transition in individuality
has occurred, termed ‘‘contingent irreversibility’’ [2, 4].
We found that species with clonal groups were significantly

more likely to have made the transition to obligate multicellu-
larity (Figures 2 and 3A; pMCMC = 0.0002). Overall, 75%
(9/12) of the lineages with clonal group formation had made
the transition to obligate multicellularity, whereas the five line-
ageswith potentially nonclonal group formation had only led to
facultative multicellularity. Obligate multicellularity is feasible
in species with nonclonal group formation—all it requires is
that cells always aggregate to complete a necessary part of
their life cycle (i.e., not just under certain conditions). Given
that we found no evidence for nonclonal organisms having
evolved obligate multicellularity, this suggests that the genetic
conflict that arises from lower relatedness (r % 1) inhibits this
major transition in individuality.
If there is a lack of conflict within obligate multicellular

groups, such that the group is thought of as an individual,
then they will have made a major evolutionary transition in in-
dividuality [2–4]. Clonality leads to no within-group conflict
[13]. Consequently, because obligate multicellularity has only
evolved in species with clonal groups, all of these species
have made a major transition in individuality.
Sociality in Multicellular Groups

We then examined whether relatedness influenced the level of
sociality in multicellular groups. We collected data for four life-
history variables: the number of different cell types that can
occur in each group, whether or not species had sterile cells,
the percentage of the total number of cells that was sterile in
species that had sterile cells, and the total number of cells in
the group (organism). The number of different cell types that
can occur in a group is analogous to the number of castes in
eusocial insect colonies, and hence represents the extent to
which different group members specialize in different roles
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http://dx.doi.org/10.1016/j.cub.2013.05.004
mailto:stuart.west@zoo.ox.ac.uk
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cub.2013.05.004&domain=pdf


Methanobacteria 

Myxobacteria 

Firmicutes 

Actinobacteria 

Cyanobacteria 

Cyanobacteria 

Bold 

Normal 

Clonal group formation 

Nonclonal group formation 

Obligate multicellularity 

Facultative multicellularity 

Green plants 

Cellular slime molds 

Animals 

Plasmodial slime molds 

Red algae 

Fungi & Yeast

mold
s

Figure 1. Multicellularity across the Tree of Life

The figure shows an overview phylogram of the taxa in our data set. We have labeled each taxon according to whether multicellular groups are either clonal

(black circles) or nonclonal (gray circles) and whether multicellularity is an obligate (bold font) or a facultative (normal font) part of the life cycle. The relatively

low number of times that multicellularity has evolved, especially in taxa with nonclonal groups, emphasizes the importance of collecting data on specifically

targeted groups to increase the statistical power of phylogenetically based analyses.
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[4]. Sterile cells represent a case of extreme altruism, analo-
gous to sterile workers in eusocial insects, forgoing any oppor-
tunity to reproduce directly in order to help others [5]. The total
number of cells in the group is seen as one of the traits that
contribute to and correlate with group complexity [4].

We found that species with clonal groups had significantly
higher numbers of cell types and a significantly higher proba-
bility of having sterile cells. Species with clonal groups had, on
average, approximately six times as many cell types as spe-
cies with nonclonal groups (Figures 2 and 3B; pMCMC =
0.0008) and were approximately twice as likely to have sterile
cells (Figures 2 and 3C; pMCMC = 0.02). These significant in-
fluences of relatedness are particularly impressive given the
following: (1) ecological costs and benefits also matter, not
just relatedness [17]; (2) relatedness may still be extremely
high (for example, r = 0.98 [20] in the nonclonal groups); and
(3) our statistical power is limited by the small number of evolu-
tionary transitions to multicellularity. This emphasizes not only
that relatedness matters, but that it matters a lot.

We found that species with clonal groups had a higher pro-
portion of sterile cells (in the species with sterile cells) and a
greater number of cells, but that these differences were
nonsignificant. In species with sterile cells, those that formed
clonal groups had approximately three times the proportion
of sterile cells in comparison to species with nonclonal groups
(Figure 3D; pMCMC = 0.41). Species with clonal groups had,
on average, approximately 100 times as many cells in their
group as species with nonclonal groups (Figures 2 and 3E;
pMCMC = 0.27). This lack of statistical significance despite
the magnitude of differences reflects both high variability
and a limited statistical power, due to the small number of
independent evolutionary origins of multicellularity, especially
those with potentially nonclonal group formation (Figures 1
and 3A). For example, the comparison of the proportion of
sterile cells was limited primarily to a comparison of clonal vol-
vocine algae and cyanobacteria with the nonclonal cellular
slime molds (Figure 3D). The high variability may reflect that
although a higher relatedness can favor more sterile cells
and larger groups, the ecological costs and benefits of these
traits could vary across taxa.

Causality and Assumptions

We have examined how relatedness influences both whether a
transition to obligate multicellularity has occurred and the
different traits that determine the level of sociality, such as
whether there are sterile cells in the group. Previous work
has examined multiple traits simultaneously by comparing
simple and complex multicellular species, where complexity
is defined by the presence of sterile cells, an early germ-
soma split, a high number of cell types, and a large number
of cells [4, 10, 11]. However, although the simple/complex
distinction is likely to be correlated with whether a major
transition has occurred, it is not a defining feature, and the cor-
relation can break down [7]. For example, Dictyostelium
purpureum and Volvox carteri are both simple, having a sterile
soma and the samenumber of cell types, but only V. carteri has
undergone the major transition to obligate multicellularity.
Furthermore, although complex multicellularity has evolved
only in species with a single-cell stage (unitary development)
that leads to clonality (r = 1) [10, 11], there is no significant cor-
relation between relatedness and whether multicellularity is
simple or complex (pMCMC = 0.21). A problem here is that
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Figure 2. Evolutionary Relationships between Clonality and Multicellular Traits

The figure shows the evolutionary transitions between clonal (black tips and edges) and nonclonal (red tips and edges) group formation and its correlation

with obligate (black squares) versus facultative (white squares) multicelluarity, the presence of sterile soma (black diamonds represent sterile soma; white

diamonds represent no sterile soma), and the number of different cell types (the size of thewhite circles represents the natural logarithm of the number of cell

types). Ancestral reconstruction of clonal and nonclonal states was conducted using Bayesian phylogenetic mixedmodels in MCMCglmm (see also Figures

S1 and S2).
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Figure 3. Group Formation, Evolutionary Transi-

tions, and Sociality

The graphs show, for multicellular groups that

are either clonal or potentially nonclonal, the (A)

number of lineages in which facultative and obli-

gate multicellularity have evolved; (B) number of

cell types; (C) probability of having steriles cells;

(D) percentage of sterile cells in species with a

sterile soma; and (E) total number of cells. Esti-

mates in (B)–(E) are posterior modes with 95%

credible intervals from Bayesian phylogenetic

mixed models. The number of cell types is back-

transformed from a Poisson distribution with log

link function, the probability of sterile cells from a

binary distribution with logit link function, the

proportion of sterile cells from a binomial distri-

bution with a logit link function, and total number

of cells is on a logarithmic scale (see also Fig-

ure S3).
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complex multicellularity has evolved only five times, in sister
groups: animals, fungi, plants, red algae, and brown algae [4,
11]. Consequently, complex multicellularity hasn’t evolved in
enough separate places on the tree of life to provide statistical
power for a formal comparative analysis [19, 21].

Our results are robust for the assumptions that we make
about how relatedness and the various social traits coevolve.
We assumed that relatedness does not evolve and causally
affects each of the social traits. Although the causal effect of
relatedness on the evolution of social traits is strongly sup-
ported [22], the variation in relatedness among cells may
change over evolutionary time. We therefore reanalyzed our
data, allowing both relatedness and the social traits to evolve
across the tree, while relaxing our assumption of causality [23].
These analyses gave qualitatively identical results, with a
significant statistical correlation between relatedness and
obligate versus facultative multicellularity (p < 0.0001),
number of cell types (p = 0.003), and probability of sterile
soma (p = 0.009), but not number of cells (p = 0.08) or the
proportion of sterile cells in the species that had sterile cells
(p = 0.34; Table S3).

In almost all of the species with clonal group formation, a
unicellular stage is involved, wherein the group (or organism)
arises from a single cell, usually a zygote or spore [10, 11].
The exception to this is in species with multicellular propa-
gules, wherein the propagules are formed by cells remaining
with their parents, as in some cyanobacteria [24]. Another
consequence of a unicellular stage is that it leads to a shared
developmental history that could facili-
tate the scope for coordinated develop-
ment among cells, for example into
different cell types [11]. This should not
be seen, however, as a competing
explanation to relatedness, as it is a
mechanistic (proximate) and not a se-
lective (ultimate) issue [25, 26]. For
example, although the potential for co-
ordination could place a limit on the
number of cell types (the strategy set
open to natural selection), we still need
an explanation for why multiple cell
types are favored (which strategy is
favored by natural selection). Nonethe-
less, interactions can be important, as
natural selection can only act on the options that are develop-
mentally and mechanistically possible.

Relatedness and the Major Transitions
More generally, when combined with data from previous
studies, our results show how relatedness provides a single
life-history variable that plays a key role in explaining evolu-
tionary transitions that involve members of the same species
joining together to cooperate [3, 4, 7–9, 27]. We have shown
how a higher relatedness between cells leads to a higher likeli-
hood of obligate multicellular groups, a higher number of cell
types, and a higher likelihood of sterile cells (Figures 2, 3,
and S3). A previous experimental study has shown that
Dictyostelium discoideum loses cooperative fruiting-body
formation if kept under conditions of low relatedness [12].
Previous comparative studies have shown how a higher
within-group relatedness is correlated with cooperative
breeding in both birds and mammals [28, 29] and with the evo-
lution of eusociality in animals [8, 9, 30].
In all cases, relatedness is determined by how groups are

formed. A higher relatedness arises from (1) offspring staying
with their parents (termed ‘‘subsociality’’) rather than individ-
ualsof thesamegenerationaggregating together (termed ‘‘par-
asociality’’ or ‘‘semisociality’’) and (2) either asexuality or lower
levels of promiscuity. Taken together, these results support a
fundamental role of howgroups form, via the influenceof group
formation on relatedness, for the evolution of cooperative
breeding, eusociality, and now multicellularity [7–9, 28–30]
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(A) In sexual animals with strict lifetime

monogamy, when groups form by offspring

staying to help their mother (subsociality), poten-

tial helpers are equally related to their own

offspring (roff = 1/2) and to their mother’s

offspring (rhelp = 1/2), who they could help raise.

This means that there is no conflict over which

offspring to raise (roff = rhelp), which facilitates

the evolution of reproductive dependency be-

tween group members and means that any small

efficiency benefit of helping will favor altruistic

cooperation [8, 13] (B/C > 1, where B and C are

the benefit and cost terms in Hamilton’s rule

[17]). In contrast, if groups form by individuals

from the same generation aggregating together

(parasociality), such as sisters, or if females

mate multiply during their lifetime (promiscuity),

then potential helpers are more related to their

own offspring (roff = 1/2) than to the offspring

who they could help raise (rhelp < 1/2). In this

case, it is much harder to evolve complete repro-

ductive dependency between group members,

and a larger efficiency benefit of helping is

required to favor cooperation.

(B) The same general predictions occur when

considering group formation by cells or asexual

animals, such as aphids. Specifically: when

groups formby offspring remainingwith their par-

ents, this leads to potential helpers being equally

related to their own offspring and to the offspring

that they could help raise (rhelp = roff), as they are

all clonal (r = 1); when groups form by individuals

aggregating together, this leads to potential

helpers being more related to their own offspring

than to the offspring who they could help raise

(rhelp < roff).
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(Figures 2 and 3). Experimental evolution studies suggest that
themethodof group formation is similarly important for a range
of cooperative behaviors in microorganisms [31–33].

Furthermore, our data also support Boomsma’s hypothesis
[7–9] that although a higher relatedness favors greater levels of
cooperation, there is something special about clonality in
asexual species or strict lifetime monogamy in sexual species.
At these extreme points, the offspring that can potentially stay
and help their parents are equally related to the offspring they
can help raise (rhelp) and the offspring they could produce if
they breed independently (roff), such that rhelp = roff (Figure 4).
Consequently, as long as there is some ecological benefit to
cooperation, this removes any conflict over whether to help
or breed [13], and thus facilitates the evolution of complete
reproductive dependency between group members. The ma-
jor evolutionary transitions to obligate multicellularity and obli-
gate eusocial societies have only occurred when rhelp = roff
holds, due to group formation by offspring staying with par-
ents combined with either strict lifetime monogamy or asexual
reproduction [7–9, 11, 30] (Figure 3A).
The distinction between facultative and
obligate multicellularity is of equal
importance, and it is directly analogous
to that between facultative and obligate
eusociality [7, 9, 34].
In contrast,when there isnot strict life-

time monogamy in sexual species, or
groups form by individuals of the same
generation aggregating together, this leads to rhelp < roff, and
only transitions to facultative multicellularity or cooperative
breeding have occurred [7–9, 11, 28, 29] (Figure 3A).
Examples of this include the multiclone fruiting bodies of Dic-
tyostelid slime molds, or the slightly promiscuous coopera-
tive-breeding vertebrates. This suggests that rhelp = roff can
be a necessary precursor for ‘‘fraternal’’ major transitions that
involve cooperation between members of the same species.
If rhelp < roff, then at some point in their life, potential helpers
may do better by breeding independently; therefore, they are
selected to retain the flexibility to do so [7–9]. Major transitions
require, by definition, a complete reproductive dependency
between group members [2, 4], and thus the retention of this
flexibility can stall a potential major transition (Figure 4).

Experimental Procedures

Wesearched the literature for information on the evolution and development

of multicellularity in asmany different taxa as possible and found data for 17

out of the 25 independent evolutionary transitions to multicellularity
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(Supplemental Information). Several groups (e.g., plants) include both

complex and simple multicellular species. When analyzing the evolutionary

transitions (Figure 3) we are interested in the highest level of complexity ob-

tained; therefore, we classified each group according to the more complex

species in the group. A single-cell (unitary) stage leads to clonality [10, 11],

but clonality can also occur in species with multicellular propagules when

the propagules are formed by cells remaining with their parents, as in

some cyanobacteria [24]. Thismatters because, from an evolutionary theory

perspective, the key distinction is whether groups are clonal (r = 1) or not (r <

1), and not just whether there is a single-cell (unitary) stage (although they

will be highly correlated [10, 11]).

We examined whether the evolution of multicellularity was influenced by

relatedness by testing whether there were differences between clonal and

nonclonal taxa for six different social traits: (1) obligate versus facultative

multicellularity (binary distribution); (2) total number of cells (Gaussian after

log transformation); (3) the number of cell types after controlling for total

number of cells (Poisson distribution); (4) presence of sterile cells (binary

distribution); (5) percentage of cells that are sterile in taxa with sterile

soma (binomial distribution); and (6) complex versus simple multicellularity

(binary distribution). We carried out our analyses using Bayesian phyloge-

netic mixed models (BPMM) with MCMC estimation implemented in

MCMCglmm and checked the robustness of our results to assumptions of

causality and tree-branch lengths (Supplemental Information).

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, three figures, and seven tables and can be found with this article on-

line at http://dx.doi.org/10.1016/j.cub.2013.05.004.
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for funding.

Received: February 1, 2013

Revised: April 9, 2013

Accepted: May 1, 2013

Published: June 6, 2013

References

1. Leigh, E.G., Jr. (1995). The major transitions of evolution. Evolution 49,

1302–1306.
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