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How to make a sterile helper

Philip A. Downing1), Charlie K. Cornwallis2) and Ashleigh S. Griffin1)*
The sterile worker castes found in the colonies of social insects are often cited

as archetypal examples of altruism in nature. The challenge is to explain why

losing the ability to mate has evolved as a superior strategy for transmitting

genes into future generations. We propose that two conditions are necessary

for the evolution of sterility: completely overlapping generations and

monogamy. A review of the literature indicates that when these two conditions

are met we consistently observe the evolution of sterile helpers. We explain the

theory and evidence behind these ideas, and discuss the importance of ecology

in predicting whether sterility will evolve using examples from social birds,

mammals, and insects. In doing so, we offer an explanation for the extraordinary

lifespans of some cooperative species which hint at ways in which we can

unlock the secrets of long life.
cooperation; evolution; Hamilton’s ru
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Introduction

Altruistic behaviour is epitomized by the
sterileworker castes found in the colonies
of social insects. Instead of attempting to
reproduce, workers invest in a variety of
cooperative behaviours ranging from
brood care and colony defence to forming
bivouacs and tending fungus gardens [1].
In extreme cases, workers have become
morphologically specialized to perform
these tasks. For example, the heads of
worker turtle ants,Cephalotes varians, are
disc shaped, allowing themtoact as living
doors to their nests [2], while the swollen
crops of large honeypot ant workers,
Myrmecocystus mexicanus, permit them
to act as storage vessels of sugar, water,
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and lipids [3]. These behaviours have an
obvious benefit to the colony as a whole,
but pose important questions about the
processofnatural selection [4, 5]: howcan
a gene for altruism spread when those
carrying it are sterile?

Inclusive fitness theory, first pro-
posed by W. D. Hamilton in the
1960s [6, 7], provides a solution to this
problem.Altruistic individualsareable to
transmit theirgenes to futuregenerations
indirectly by improving the reproductive
success of relatives that carry the same
gene. Family groups provide ideal con-
ditions for the evolution of altruism,
simplybecause familymembersaremore
likely to share genes, relative to the
population as a whole. Relatedness in
family groups can, however, still vary
because of differences in the number of
breeders contributing to the family gene
pool. This led to the prediction that life-
time monogamy is necessary for the
evolution of sterility because it ensures
that helpers can pass on as many genes
by raising full siblings as they can by
having their ownyoung [8–10].However,
not all monogamous cooperative species
www.bicals, Inc.
have sterile helpers. Most notably, mo-
nogamy drives the evolution of coopera-
tive breeding in vertebrates [11, 12], an
entire lineage in which all helpers are
able to reproduce [13, 14]. Why have
sterile helpers evolved in some monoga-
mous species but not in others?

Here, we argue that longevity plays a
key role in determining which monoga-
mous species evolve sterile helpers. To do
so,webreakdowntheevolutionofsterility
into two steps. The first step is the
formation of a cooperatively breeding
group in which helpers are not sterile,
but retain the ability to breed later in life.
Being long-livedmakes thismore likely to
happen. The second step is the transfor-
mation of a cooperatively breeding group,
where all individuals are fertile, to one
with sterile helpers. For this to happen,
helpers need to be able to invest in raising
full siblings for the duration of their lives.
This ispossible if breeders live longer than
their offspring that help. We then discuss
what stops cooperative groupswith fertile
helpers from transforming into species
with sterile helpers� this depends on the
interplay between ecology and longevity.
These arguments make sense of the
remarkable lifespans of some cooperative
species. For example, they help to explain
whyharvesterantqueens,Pogonomyrmex
owyheei, can live for up to 30 years [15]
andwhynakedmole-rats,Heterocephalus
glaber, have become a model organism
for studying the mechanisms of aging,
including cancer resistance [16–18].
Step 1: Form a
cooperatively breeding
group

The first step in the evolution of a
sterile helper is the formation of a
ioessays-journal.com 1600136 (1 of 9)
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cooperatively breeding group [23, 24].
Here, we define a cooperatively breed-
ing group as a family in which
offspring delay dispersal and help their
parents in raising their siblings. The
evolution of cooperative breeding is
predicted to be more likely to happen
from monogamous than from polyan-
drous non-cooperative ancestors [8–10].
This is because monogamy ensures a
favourable exchange rate when helpers
are weighing up whether they can
pass on more genes by helping or by
breeding (Box 1). Evidence from
birds and mammals supports this pre-
diction: cooperatively breeding species
are more likely to evolve from monoga-
mous than from polyandrous ances-
tors [11, 12].
Cooperative breeding birds are
long-lived

In addition to being less polyandrous
than non-cooperative species, coopera-
tively breeding birds are also long-lived.
The cooperatively breeding red-winged
fairy-wren, Malurus elegans, which
weighs little more than a ballpoint
pen, can live for up to 16 years [25],
whereas the similarly sized non-
Box 1

The relatedness exchange r

When should one individual (the actor) g
to raise someone else’s (the recipient) yo
that altruistic helping of this kind will evo
satisfied [19–21]. That is, when the num
recipient to produce (B) – to whom the ac
number of offspring the actor could prod
related by ro. The ratio of these relatedn
actor an exchange rate that it can use to
its own [22]. Clearly, cooperation is most
exchange rate (rn/ro) equals one, meanin
efficiency benefit to cooperating (B>C),
helping than by breeding independently
relatedness exchange rate equals onew
their parents in raising full siblings. On a
full siblings as they are to their own offs
evolution of sterile helpers will happen in
female has mated monogamously [8, 9]
relatedness exchange rate needs to equ
lifetime. This is only possible if helpers c
duration of their lifespans.
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cooperative Zebra finch, Taeniopygia
guttata, only lives for up to 5 years [26]
(Fig. 1A and B). Similarly, pairs of
cooperatively breeding Seychelles war-
blers, Acrocephalus sechellensis, may
remain together for up to 9 years [27,
28], while non-cooperative bearded tits,
Panurus biarmicus, live for 2 to 3 years
on average [29] (Fig. 1C and D). This
trend has been confirmed across bird
species: cooperative breeders are lon-
ger-lived on average than non-coopera-
tive species, after accounting for
confounding factors such as latitude
and body mass, which also influence
longevity [30–32].

Why do we see this association
between cooperative breeding and lon-
gevity? There are two possible reasons.
Firstly, longevity may be a consequence
of cooperative breeding. Living in a
group has been suggested to protect
group members from external causes of
mortality, through increased predator
vigilance for example, which in turn
selects for longer life [33, 34]. Alterna-
tively, longevity may be a cause of
cooperative breeding. Theoretical mod-
els of the evolution of cooperative
breeding find that long-lived species
are more likely to make the transition to
cooperative breeding than short-lived
ate

ive up its own reproduction and help
ung? Inclusive fitness theory predicts
lve when Hamilton’s rule, rnB> roC, is
ber of offspring the actor helps the
tor is related by rn – is greater than the
uce if it did not help (C) – to whom it is
ess coefficients effectively gives the
value the recipient’s offspring against
easily favoured when the relatedness
g that as long as there is some small
the actor can pass on more genes by
. In sexually reproducing species, the
hen offspring delay dispersal and help
verage, helpers are as related to their
pring. Hence, the prediction that the
family groups in which the breeding

. For sterility to evolve, however, the
al one for the duration of the actor’s
an invest in raising full siblings for the
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species because long life enhances
reproductive success once a nest is
inherited [35, 36].

Whether long life is a cause or a
consequence of cooperative breeding
has been tested in birds [32]. If long life
makes cooperative breeding more likely
to evolve, then we would expect the
ancestors of cooperative breeders to be
longer-lived than the ancestors of non-
cooperative species that do not evolve
cooperation. If long-life is a consequence
of the benefits of group living then
longevity should increase after coopera-
tivebreedinghas evolved.Ancestral state
reconstructions have demonstrated that
theancestorsof cooperativebreedershad
higher rates of annual survival (a proxy
for longevity) than the ancestors of non-
cooperative breeders, and there were no
changes inannual survivalaftera species
became cooperative [32]. These results
confirm the prediction that long life
makes the evolution of cooperative
breeding more likely. This supports the
idea that the opportunity to reproduce
via nest inheritance plays an important
role in the evolution of cooperative
breeding, as predicted by theoretical
models of the evolution of cooperative
breeding [37–42]. It also appears that
exceptionally long-lived cooperatively
breeding birds, such as the red-winged
fairy-wren,M. elegans, have higher rates
of polyandry than non-cooperative spe-
cies with similar lifespans. This suggests
that when relatedness between helpers
andoffspring is low�hence reducing the
opportunity for indirect fitnessbenefits�
living for a long time is important for
obtaining a breeding position to secure
direct fitness benefits.
Patterns of longevity in
cooperative mammals

There is mixed evidence as to whether
cooperatively breeding mammals are
long-lived. Among small ground-dwell-
ing mammals (those weighing less than
60 kg), maximum lifespans are higher in
cooperatively breeding species than in
non-cooperative species [43]. In con-
trast, across all mammals, there appears
to be no difference in the annual
survival rates of cooperatively breeding
and non-cooperatively breeding spe-
cies [44]. In fact, the pattern is in the
opposite direction to that predicted:
, 1, 1600136,� 2016 WILEY Periodicals, Inc.



Figure 1. Cooperatively breeding birds are relatively long-lived. The cooperatively breeding
red-winged fairy-wren, Malurus elegans (A), is longer-lived than the similarly sized but non-
cooperative zebra finch, Taeniopygia guttata (B). Similarly, the cooperatively breeding
Seychelles warbler, Acrocephalus sechellensis (C), is longer-lived than the same sized but
non-cooperative bearded tit, Panurus biarmicus (C). Images from Wikipedia Commons
(A–D): Cas Liber, Jim Bendon, Christian Hauzar, and Martin Mecnarowski.
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non-cooperative breeders have higher
rates of annual survival than coopera-
tive breeders, although this difference is
not statistically significant. It is cur-
rently unclear why large size should
make a difference to the relationship
between cooperative breeding and
longevity.
Nest inheritance is associated
with cooperative breeding in
social insects

All of the evidence discussed so far
concerning the role of longevity and the
evolution of cooperative breeding has
come from vertebrates. Is the evolution
of cooperative breeding in family groups
in other clades also associated with
longevity? Evidence suggests that it is.
The ancestral termite is likely to have
been a long-lived cooperatively
Bioessays 39, 1, 1600136,� 2016 WILEY Period
breeding cockroach [45]. This conclu-
sion is based on comparisons between
extant termites and the cockroach
genus Cryptocercus, which form a
monophyletic group. Cryptocercus are
wood-feeding cockroaches that provide
bi-parental care in family groups [46].
They live in chambers and burrows
chewed into the logs they feed on. This
provides a relatively safe nesting envi-
ronment, which means they are rela-
tively long-lived: their life-cycle takes
8 years to complete from hatch to hatch.
As in birds, nest inheritance resulting in
the opportunity to reproduce is thought
to have been an important incentive for
philopatry and the evolution of cooper-
ation in prototermites [45, 47–49].

The opportunity for nest inheritance
is not restricted to long-lived species.
For example, the paper wasp, Polistes
dominulus, has an annual life-cycle and
relatively high mortality rates [50]. In
icals, Inc.
this species, newly founded social
groups typically consist of sisters but
from 15 to 35% of females are unre-
lated [51–53]. Nest-inheritance compen-
sates for the low relatedness exchange
rate and makes cooperation worth-
while: females that inherit the dominant
position producemore offspring than do
solitary females [54]. Furthermore, co-
operative breeding ensures that young
are raised to independence even if their
parent dies, a mechanism known as
assured fitness returns [55, 56]. Remark-
ably, subordinate females that are next
in line to inherit the dominant position
invest less in care than subordinate
females that are unlikely to inherit a
breeding position, further reflecting
how cooperative behaviour is shaped
by future direct fitness [57]. This exam-
ple emphasizes that it is the opportunity
to reproduce via nest inheritance that
provides an incentive for cooperative
breeding, and this occurs in both long-
and short-lived species.
Step 2: Transform your
cooperative group

Once a cooperative breeding group has
formed, the second step in the evolu-
tion of a sterile helper is selection for
reduced reproductive function in help-
ers [23, 24]. For this to happen, a helper
needs to be able to re-invest its
potential reproductive effort into rais-
ing full siblings for its entire lifespan
rather than for just a fraction of it [8, 9].
When this is the case, the relatedness
exchange rate equals one and drops out
of Hamilton’s rule (Box 1), and all that
is required for sterility to evolve is a
small efficiency benefit to helping
(B>C). From this argument, it follows
that two conditions are necessary for
the evolution of a sterile helper. First,
strict lifetime monogamy of the breed-
ing female is required to ensure that
helpers are investing in the production
of full siblings [8, 9]. This appears to be
the case: monogamy is the ancestral
condition for all examined origins of
eusociality in bees, wasps, and
ants [67]. Second, a complete overlap
of generations is required to ensure
that a helper is able to invest in raising
full siblings for the duration of its
lifetime.
1600136 (3 of 9)



Figure 2. Generational overlap affects the lifetime relatedness exchange rate. A: When there
is no overlap between parents and offspring, social groups will consist of siblings. In this
case, the relatedness exchange rate (rn/ro) is equal to a half (pink-shaded region). B: When
there is some generational overlap, offspring can do as well by helping to raise full siblings
as they can by breeding independently while their parents are alive (blue-shaded region).
C: When there is complete generational overlap and parents are longer-lived than their
offspring, offspring can invest in raising full siblings for the duration of their lifespans,
favouring lifetime commitment to a non-reproductive role. This can be achieved in different
ways: through divergent selection on the lifespans of breeders and helpers or through the
co-option of a bivoltine life-cycle.
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The extent of generational overlap
influences the lifetime relatedness ex-
change rate. Consider the three follow-
ing examples. In the first, parents die
before their young reach reproductive
maturity resulting in non-overlapping
generations (Fig. 2A). At best, members
of the same cooperative group will be
full siblings and the relatedness ex-
change rate will equal one half. This
appears to characterize some coopera-
tively breeding species. For example in
co-foundress associations of the paper
wasp, P. dominulus, and in breeding
groups of long-tailed tits, Aegithalos
caudatus, group members are often
siblings [51–53, 68, 69]. As expected
from Hamilton’s rule, in these species
the benefits of cooperating are high and
the costs are low which compensates for
helping to raise the offspring of
1600136 (4 of 9)
siblings [54, 70]. In the second example,
there is a degree of generational overlap
between parents and offspring (Fig. 2B).
Here, offspring can raise full siblings for
some of their lifespans, but not all.
While their parents are alive, offspring
often delay reproduction to help, but
once their parents die, independent
reproduction becomes a better fitness-
maximizing strategy than helping. This
stops lifetime commitment to a sterile
role. As seen earlier, a degree of overlap
between reproductive generations
appears to typify the life histories of
most cooperatively breeding vertebrates
and some social insects. In the third
example, parents live longer than their
offspring, resulting in completely over-
lapping generations (Fig. 2C). Conse-
quently, helpers can invest in raising
full siblings for the duration of their
Bioessays 39
lives. The indirect fitness gains from
helping are therefore always as profit-
able as the direct fitness gains from
breeding independently, hence elimi-
nating conflict over reproduction and
permitting the evolution of sterile
helpers.

What matters for the evolution of
sterility is that helpers can invest in
raising full siblings for the duration of
their lifespans. Most commonly, this
will happen when breeders are rela-
tively longer-lived than helpers:
whether helpers live for a few days or
for several years, they will have a life-
long supply of full siblings to raise if
their parents live longer than they do. It
is possible, however, that helpers can
invest in raising full siblings for their
entire lifespans with minimal overlap
between parent and offspring genera-
tions. For example, if the queen dies
once her last eggs are laid, as long as
older helpers can invest in raising this
brood for their entire lives, selection can
favour sterility. This requires that older
helpers only live for the period of
dependency of the last brood. If older
helpers were alive when this last brood
reaches independence, it would be
better for them to retain the ability to
reproduce and raise their own young.
The rate of extrinsic mortality
influences lifespan evolution

An obvious question that arises is how
do breeders become longer-lived than
helpers? Evolutionary theories of the
evolution of aging predict that a key
factor shaping an organism’s lifespan is
the rate of extrinsic mortality that
occurs, for example, due to predation
or disease [33, 71, 72]. When extrinsic
mortality is low, selection favours long-
term investment in survival, whereas
when extrinsic mortality is high, invest-
ment in early reproduction is favoured
over investment in survival. Recent
support for this prediction comes from
a study on how the ability to fly has
shaped the evolution of mammal and
bird lifespans [73]. Flight is assumed to
reduce the rate of extrinsic mortality by
allowing species to escape predation
and unfavourable conditions. Across
1,368 species of birds and mammals
the study found that species capable of
flight have longer lifespans than
, 1, 1600136,� 2016 WILEY Periodicals, Inc.
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Division of labor leads to
differences in the lifespans of
breeders and helpers

A reproductive division of labor is vital
to the evolution of lifespan differences
between breeders and helpers. This is
because it gives the unusual condition
that individuals within the same social
group may experience very different
rates of extrinsic mortality. For exam-
ple, if helpers protect breeders from
predation, they would experience ele-
vated rates of extrinsic mortality while
the breeders would experience reduced
rates. Evidence suggests that individu-
als in different roles within social
groups do indeed experience different
rates of extrinsic mortality, which leads
to differences in longevity. In the
weaver ant, Oecophylla smaragdina,
and in the leaf-cutting ant, Acromyrmex
brunneus, large helpers perform riskier
tasks than smaller helpers, and in line
with the prediction that the rate of
extrinsic mortality shapes investment in
Box 2

One genome, different lifesp

What are the proximate mechanisms
between individuals with the same geno
mellifera, being fed royal jelly determin
Queens have an average lifespan of betw
an average lifespan of 6–8 weeks [5
contribute to longer life. In Ansell’s mol
appears to enhance the lifespans of bre
as non-breeders, despite being equivale
in the ant, Cardiocondyla obscurior, q
sterilized male lived significantly longer t
the expression of a putative aging gene
and the changes in gene expression wit
those seen in the common fruit fly, Dr
Hormone may also play a key role in
between breeders and helpers. La
experimentally treated with Juvenile Hor
activity rates, reduced maternal care, an
fungal pathogen compared to a control
Juvenile Hormone [66].
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lifespan, small helpers live longer than
large helpers [74, 75]. Similarly, breeder
and helper naked mole-rats, H. glaber,
both live for over 25 years in captivity,
where they are protected from extrinsic
mortality; however, in the wild, helpers
live for 4 years on average, while
breeders live for over 17 years [17, 76].
The proximate factors underlying these
differences in the lifespans of individu-
als with the same genome provide a
unique opportunity for developing our
understanding of the aging process
(Box 2).
Insect life-cycles and lifespans

Solitary insect species with bivoltine
life-cycles have two broods per year as
an adaptation to seasonality. The first
brood is produced early in the year and
develops fully, while the second brood
is produced later in the year and enters
diapause until the cycle begins anew
the following year. Inherent in a bivol-
tine life-cycle is the ability to produce a
short-lived helper caste early in the
season which helps to rear a relatively
long-lived breeding caste later in the
year, which then overwinters. The co-
option of a bivoltine life-cycle has been
argued to explain why first brood
ans

underlying differences in longevity
me? In the Western honey bee, Apis
es which females become queens.
een 1 and 2 years, while helpers have
8–61]. Mating itself also seems to
e rat, Fukomys anselli, sexual activity
eders, which live about twice as long
nt in intrinsic quality [62, 63]. Similarly,
ueens mated to either a fertile or a
han virgin queens [64]. In this species,
, NLaz, is related to queen longevity,
h age are in the opposite direction to
osophila melanogaster [65]. Juvenile
regulating differences in longevity

sius niger ant queens that were
mone laid fewer eggs, had increased
d higher mortality when exposed to a
group with un-manipulated levels of

icals, Inc.
females in Polistes wasps help to rear
second broods [77]. Because helpers
from the first brood are typically raising
full siblings for their entire lifespans
(they die at the end of the breeding
season), the condition that the related-
ness exchange rate is equal to one for
the duration of the helper’s lifespan is
satisfied. Similar processes are thought
to explain lifespan differences in other
lineages, including the bumble bee,
Bombus terrestris [78, 79]. These life-
cycles further emphasize the point that
it is complete generational overlap,
rather than life span per se, that is
key for the evolution of sterility. While
the two are usually correlated, in
bivoltine species, a shorter lifespan
does not reduce the probability of
overlap.
Breeders are longer-lived than
helpers in some cooperative
species

An important consequence of a repro-
ductive division of labor and bivoltinism
is that breeders can evolve to be longer-
lived than helpers. This gives us our
second necessary condition for the
evolution of sterility � a complete
overlap of generations. Are breeders
longer-lived than helpers? This appears
to be the case in some cooperative
species. For example, there are consid-
erable differences in the lifespans of
breeders and helpers in many species of
ants, wasps, and bees, and the magni-
tude of the difference in lifespans
appears to be positively associated with
colony size [80]. Furthermore, the
queens of ant and termite colonies are
extremely long-lived, with average life-
spans of 10 and 11.5 years, respec-
tively [15, 81]. This is particularly
striking given that the average lifespan
of non-cooperative insect species is 0.1
years [81].

Although differences in the life-
spans of breeders and helpers exist in
some cooperative species, the extent to
which these differences are associated
with sterility has not been quantitatively
explored. As Fig. 3 demonstrates, in
some species with large differences in
longevity between breeders and help-
ers, helpers are completely sterile,
lacking functional ovaries. In other
species, however, helpers are capable
1600136 (5 of 9)



Figure 3. The difference in the lifespans of breeders (hatched bars) and helpers (dotted
bars) varies across social species. Despite considerable differences in the lifespans of
breeders and helpers in some species, helpers are still able to reproduce. Sources: Fukomys
anselli [62], Fukomys damarensis [106], Fukomys mechowii [63], Heterocephalus glaber [17],
Cardiocondyla obscurior [64], Nothomyrmecia macrops [107], Diacamma rugosum [83],
Harpagoxenus sublaevis [108], Monomorium cyaneum, Solenopsis invicta [109], Apis
mellifera [110].
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of reproducing despite expecting to live
less than half as long as breeders. For
example, there appears to be an asym-
metry in the lifespans of breeders
and helpers in naked mole-rats,
H. glaber [17]. In this species, less than
1% of females within a colony ever get to
breed, and physical aggression by the
breeding female appears to suppress
sexual maturation. Individuals less than
8 months old are capable of reproduc-
ing, however, should the opportunity
arise [16]. Similarly, queens in the slave-
making ant, Harpagoxenus sublaevis,
inhibit ovarian development in their
helpers, who can otherwise produce
sons [82]. In the Japanese ant,
Diacamma rugosum, which lacks a
morphologically differentiated queen
caste, the dominant female mutilates
1600136 (6 of 9)
the thoracic appendages of other
females to stop them from mating,
although some do manage to reproduce
(Fig. 3) [83, 84]. These patterns suggest
that an asymmetry in the lifespans of
helpers and breeders does not guaran-
tee the evolution of complete sterility.
Our argument, however, is that without
completely overlapping generations
lifetime commitment to a non-reproduc-
tive role cannot be favoured by selec-
tion. Although not all species with an
asymmetry in the lifespans of helpers
and breeders will have evolved sterility,
species with sterile helpers will have
completely overlapping generations, at
least ancestrally.

Other factors may have also played a
role in the evolution of worker sterility.
For example, there may be physical
Bioessays 39
constraints on the ability of very small
workers to maintain their ovaries, and
as the size of the colony increases, the
chance of any one worker reproducing
becomes negligible, hence diminishing
the strength of selection for investment
in reproduction [23, 85]. Selection may
also favour the retention of ovaries
among workers. For example, female
workers produce sons following queen
loss in some haplodiploid species (such
as ants, bees, andwasps) whereworkers
also regularly produce trophic eggs.
Indeed, although workers are usually
committed to a life-long non-reproduc-
tive role in haplodiploids, the loss of
ovaries among workers appears to be
rare [86–90]. Determining how these
factors influence the evolution of steril-
ity and how they interact with longevity
remains to be addressed.
Protect the queen

Although low levels of female polyandry
favour the evolution of cooperative
breeding in vertebrates, a complete
, 1, 1600136,� 2016 WILEY Periodicals, Inc.
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overlap of generations, which is re-
quired for the evolution of sterile help-
ers, is absent from most species [91, 92].
This is surprising given that there is a
clear reproductive division of labor in
many cooperatively breeding spe-
cies [13, 14, 92] which, as argued above,
sets the scene for helpers and breeders
to experience different rates of extrinsic
mortality, eventually resulting in com-
plete generational overlap. The ques-
tion this raises is why breeders and
helpers in most cooperative vertebrates
do not experience different rates of
extrinsic mortality despite a reproduc-
tive division of labour?

Ecology is likely to play an impor-
tant role. In the social insects, two
ecological syndromes are associated
with the evolution of sterility: fortress
defence and life insurance [20]. Fortress
defenders feed and live in a protected
site and include some termites, social
aphids, social shrimps, social thrips,
and ambrosia beetles. Life insurers feed
outside the nest and include ants, bees,
and wasps. In both fortress defenders
and life insurers, the nest is a valuable,
defensible resource [23]. Crucially, this
nest protects the queen from predation
while helpers may be exposed to
predation when foraging or defending
the nest for example. In contrast, among
most cooperatively breeding verte-
brates, the nesting site does not pre-
dictably guarantee that breeders and
helpers experience different rates of
extrinsic mortality as it does in fortress
defenders and life insurers. For exam-
ple, in one of themost socially advanced
birds, the obligately cooperative white-
winged chough, Cyanocorax melano-
rhamphos, breeders and helpers per-
form all of the same tasks ranging from
building the nest to guarding the
young [93, 94]. This difference in
ecology means that in most coopera-
tively breeding vertebrates all individu-
als within the social group are exposed
to similar rates of extrinsic mortality
independently of whether they are a
helper or a breeder. The only exception
to this generality are the mole-rats.
Mole-rats live and feed in a network of
subterranean burrows as do fortress
defenders [95]. As seen, differences in
the lifespans of breeders and helpers
suggest that they are exposed to differ-
ent levels of extrinsic mortality in the
wild [17, 76].
Bioessays 39, 1, 1600136,� 2016 WILEY Period
How to quantify differences in the
ecologyofcooperativelybreedingspecies
with and without sterile helpers is an
empirical challenge. Although the dis-
tinction between fortress defenders and
life insurers is useful, and it has been
argued that vertebrates show a combina-
tion of these two syndromes [96], what
seems essential is the extent towhich the
queen is protected from predation rela-
tive to workers.
Post-reproductive sterility can
evolve in multi-generational
families

Another interesting difference between
the social insects and some social
vertebrates is the existence of multi-
generational families in the latter. In our
own species for example, parents, their
offspring and their grand-offspring may
all live within the same family
group [97–99]. In social insects, however
this appears to be rare. Group members
within ant and termite colonies are
typically parents and their offspring
[1, 67]. This makes group kin-structure
more predictable in social insects than it
is in social vertebrates living in multi-
generational families, which undergo
age-related changes in relatedness. For
example, grandmothers are less related
to their daughter’s offspring than their
own, while daughters are equally related
to theirmother’s offspring and their own.

From a theoretical perspective these
sorts of asymmetries in relatedness that
arise with age can lead to conflict over
reproduction within social groups, and
ultimately drive the evolution of post-
reproductive lifespans [100, 101]. Sup-
port for this prediction comes from a
study on the evolution of menopause in
the killer whale, Orcinus orca [102]. In
killer whales, male and female offspring
are both philopatric, and mating occurs
between groups, meaning that females
become more closely related to group
members as they age, thus favouring
investment in helping the group late in
life. There is also evidence from our own
species to suggest that age related
changes in relatedness may favour the
evolution of post-reproductive life-
spans. In societies with female-biased
dispersal, immigrant females are only
related to their own offspring in their
adopted groups, while older females
icals, Inc.
are related to other group members,
including the immigrant females’ off-
spring. This favours younger females in
reproductive competition with older
females who are still able to gain
indirect fitness benefits by helping late
in life [103, 104].
Predictions and
conclusions

We have shown that making a sterile
helper requires the evolution of cooper-
ative breeding followed by selection for
reduced reproductive function in help-
ers. This requires two conditions to be
satisfied: the group’s breeding female
should be monogamous, and there
should be a complete overlap of gen-
erations. These conditions ensure that
helpers can do as well by helping as
they could do by breeding for the
duration of their lives, thereby elimi-
nating conflict over reproduction. The
second condition is satisfied when
breeders and helpers are exposed to
low and high rates of extrinsic mortality
respectively or through the co-option of
a bivoltine life-cycle. Further empirical
observations on individual species, and
comparative analyses across species,
should be used to confirm that there is
complete generational overlap in spe-
cies with sterile helpers. Ancestral state
reconstructions of worker and breeder
lifespans can then be used to explore
their co-evolution.We expect that differ-
ences in breeder and worker lifespans
should be greatest in the ancestors of
species with sterile helpers. One diffi-
culty in testing this hypotheses is that
once sterile helpers have evolved, the
colony becomes the unit of selection,
meaning that complete overlap of gen-
erations may be lost [105].

Overall, cooperative behaviour
accounts for the exceptional 30-year
lifespans of harvester ant queens,
P. owyheei, and for cancer resistance
in naked mole-rats. Because the same
genome can produce vastly different
lifespans, social species provide an
ideal system for studying the epige-
netics of senescence and other proxi-
mate mechanisms underlying the aging
process. This could help us unlock the
secrets to designing extraordinary
lifespans.
1600136 (7 of 9)
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