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1  | INTRODUC TION

The gastrointestinal tract of vertebrates is considered to be largely 
sterile at the time of birth (Perez‐Muñoz, Arrieta, Ramer‐Tait, & 
Walter, 2017; cf. Jiménez et al., 2008) and subsequently colonized 

by a wide array of micro‐organisms, collectively termed “the gut mi‐
crobiota.” The microbial composition of the gut during early life has 
been shown to have major influences on the health and phenotype 
of adults through its effects on gut morphology, metabolism, im‐
mune system development and brain development (Cho et al., 2012; 
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Abstract
The development of gut microbiota during ontogeny is emerging as an important pro‐
cess influencing physiology, immunity and fitness in vertebrates. However, knowl‐
edge of how bacteria colonize the juvenile gut, how this is influenced by changes 
in the diversity of gut bacteria and to what extent this influences host fitness, par‐
ticularly in nonmodel organisms, is lacking. Here we used 16S rRNA gene sequenc‐
ing to describe the successional development of the faecal microbiome in ostriches 
(Struthio camelus, n = 66, repeatedly sampled) over the first 3 months of life and its 
relationship to growth. We found a gradual increase in microbial diversity with age 
that involved multiple colonization and extinction events and a major taxonomic shift 
in bacteria that coincided with the cessation of yolk absorption. Comparisons with 
the microbiota of adults (n = 5) revealed that the chicks became more similar in their 
microbial diversity and composition to adults as they aged. There was a five‐fold dif‐
ference in juvenile growth during development, and growth during the first week of 
age was strongly positively correlated with the abundance of the genus Bacteroides 
and negatively correlated with Akkermansia. After the first week, the abundances 
of six phylogenetically diverse families (Peptococcaceae, S24‐7, Verrucomicrobiae, 
Anaeroplasmataceae, Streptococcaceae, Methanobacteriaceae) were associated 
with subsequent reductions in chick growth in an age‐specific and transient manner. 
These results have broad implications for our understanding of the development of 
gut microbiota and its associations with animal growth.
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Cox et al., 2014; Dominguez‐Bello et al., 2010; Heijtz et al., 2011; 
Russell et al., 2012). For example, animals prevented from acquir‐
ing gut bacteria have smaller intestines with thinner walls, smaller 
lymph nodes, under‐developed immune systems and reduced organ 
sizes (Furuse & Okumura, 1994; Gordon & Pesti, 1971; Macpherson 
& Harris, 2004). Similarly, animals with poorly developed gut micro‐
biota have an altered metabolism (Cox et al., 2014) and are more 
susceptible to infection by pathogens (Inagaki, Suzuki, Nomoto, & 
Yoshikai, 1996; Round & Mazmanian, 2009; Sprinz et al., 1961). As a 
result, it is important to characterize how, when and which microbes 
are recruited and lost during ontogeny, and how this is linked to host 
development.

A key feature of microbiomes that has been predicted to influ‐
ence host fitness is the diversity of the community (Foster, Schluter, 
Coyte, & Rakoff‐Nahoum, 2017; Hibbing, Fuqua, Parsek, & Peterson, 
2010). However, research into how gut microbial diversity changes 
with age has produced results that differ across species. In mice and 
humans, colonization of gut bacteria is initiated during birth, where 
the mother's vaginal and skin microbiota are important sources of 
bacteria, and the diversity increases gradually with age (Kundu, 
Blacher, Elinav, & Pettersson, 2017; Pantoja‐Feliciano et al., 2013; 
Sommer & Bäckhed, 2013). The seeding of microbes continues 
through lactation, but subsequently shifts during weaning towards 
an adult‐like bacterial community that is more stable (Koenig et al., 
2011; Sekirov, Russell, Antunes, & Finlay, 2010; Yatsunenko et al., 
2012). In contrast, in zebrafish (Danio rerio) and African turquoise kil‐
lifish (Nothobranchius furzeri) the alpha diversity and richness of the 
gut microbiota is highest in neonatals and subsequently decreases 
during maturation (Smith et al., 2017; Stephens et al., 2016). In birds, 
studies examining age‐related changes in gut microbial diversity are 
limited and show conflicting results, potentially due to differences 
in parental and environmental transmission of microbes across spe‐
cies (Dewar et al., 2017; Godoy‐Vitorino et al., 2010; Grond, Lanctot, 
Jumpponen, & Sandercock, 2017; van Dongen et al., 2013; Yin et 
al., 2010). For example, older nestlings of great tits (Parus major) had 
lower cloacal microbial diversity than younger nestlings (Teyssier, 
Lens, Matthysen, & White, 2018), while the opposite was found in 
tree swallows (Tachycineta bicolor; Mills, Lombardo, & Thorpe, 1999), 
and in house sparrows (Passer domesticus) age did not have any effect 
on microbial diversity or community structure (Kohl, Brun, Caviedes‐
Vidal, & Karasov, 2019). In turkeys (Meleagris gallopavo) it has been 
found that gut microbial diversity initially increases and then sub‐
sequently decreases during development (Danzeisen et al., 2015; 
Wilkinson et al., 2017), while in chickens (Gallus gallus) there is often 
a successional increase in diversity with age (Ballou et al., 2016; Lu et 
al., 2003; Oakley et al., 2014; van der Wielen, Keuzenkamp, Lipman, 
van Knapen, & Biesterveld, 2002). Such large variation in the rela‐
tionship between host age and gut microbial diversity makes it diffi‐
cult to draw general conclusions about the mechanisms behind the 
development of gut microbiomes.

Understanding how the diversity of gut microbiota develops 
over ontogeny is important, as it can have large effects on host de‐
velopment and growth. For example, gut microbes can influence 

juvenile growth by altering the efficiency of the digestion process 
or by acting as a barrier to prevent the establishment of problematic 
or beneficial bacteria (Foster et al., 2017; Ley, Peterson, & Gordon, 
2006; Lozupone, Stombaugh, Gordon, Jansson, & Knight, 2012). 
Studies evaluating juvenile growth in relation to gut microbiota 
have demonstrated that animals with low or no microbial diversity 
require a higher calorific intake to attain the same growth as hosts 
with more diverse gut communities (Bäckhed et al., 2004; Shin et 
al., 2011; Sommer & Bäckhed, 2013; Wostmann, Larkin, Moriarty, 
& Bruckner‐Kardoss, 1983). However, it has also been suggested 
that a reduced diversity of gut microbiota may increase growth and 
accelerate host development (Furuse & Okumura, 1994; Gordon & 
Pesti, 1971). This idea is supported by numerous agricultural studies 
in which higher growth rates have been achieved in farm animals 
by using antibiotics to reduce gut bacteria, a common practice since 
the 1950s (Dibner & Richards, 2005; Engberg, Hedemann, Leser, & 
Jensen, 2000; Gaskins, Collier, & Anderson, 2002; Lin, Hunkapiller, 
Layton, Chang, & Robbins, 2013). Supplementing wild animals with 
antibiotics has also been associated with positive effects on growth 
(Kohl, Brun, Bordenstein, Caviedes‐Vidal, & Karasov, 2017; Potti et 
al., 2002), although interpreting the results can be challenging as 
antibiotics can both increase and decrease gut microbial diversity 
(Crisol‐Martínez, Stanley, Geier, Hughes, & Moore, 2017; Kohl et al., 
2017). Likewise, some probiotic supplements have led to an increase 
in the growth of juvenile animals while others are associated with 
impaired growth (Angelakis, Merhej, & Raoult, 2013; Angelakis & 
Raoult, 2010; Million et al., 2012; Yin et al., 2010). Such conflicting 
reports on the role of gut microbial diversity in determining animal 
growth highlights the need for further research into the relationships 
between gut bacterial diversity, the relative abundance of specific 
bacteria and variation in host growth patterns across development. 
In addition, the majority of research has focused on humans, domes‐
ticated animals and model laboratory species, which emphasizes the 
need to broaden our understanding of the development of the host 
microbiome to nonmodel organisms.

In this study, we evaluated the development of gut microbiota 
through ontogeny in ostrich (Struthio camelus) chicks and its rela‐
tionship to variation in juvenile growth. Repeated faecal sampling 
of chicks was performed under controlled conditions from 1 week 
after hatching until 12 weeks of age, which corresponds to the crit‐
ical developmental phase in this species (Cloete, Lambrechts, Punt, 
& Brand, 2001; Verwoerd, Deeming, Angel, & Perelman, 1999). We 
also sampled adult ostriches to compare their gut microbiota with 
the juveniles'. Ostriches are the largest living bird species and, to‐
gether with other palaeognaths, branched off from other birds at 
the base of the avian phylogeny, making them an evolutionary dis‐
tinct group. They are a valuable economic resource, being farmed 
for feathers, meat, eggs and leather, yet have only been kept in cap‐
tivity for a short period of time relative to other agricultural animals 
(~150 years; Cloete et al., 2012). The chicks are highly precocial, al‐
lowing them to be raised independently from their parents, and they 
reach sexual maturity from 2 years of age. Ostriches also exhibit ex‐
tremely large variation in offspring growth rate, even in controlled 
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environments (Bonato, Evans, Hasselquist, Cloete, & Cherry, 2009; 
Deeming & Ayres, 1994; Engelbrecht, Cloete, Bunter, & van Wyk, 
2011; Skadhauge & Dawson, 1999), and are known to suffer from 
bacterial gut infections (Keokilwe et al., 2015; Verwoerd, 2000). 
These traits make the ostrich an excellent organism for investigat‐
ing host–microbiota associations, including the effects of gut micro‐
biota on juvenile growth and development.

2  | MATERIAL S AND METHODS

2.1 | Experimental setup

Ostriches were kept under controlled conditions at the Western 
Cape Department of Agriculture's ostrich research facility in 
Oudtshoorn, South Africa. Chicks were obtained from a batch of ar‐
tificially incubated eggs that hatched on 30 September 2014. A total 
of 234 individuals were monitored from hatching until 3 months of 
age (12 weeks) in four groups that contained around 58 chicks each 
at the start of the experiment. The groups were kept in indoor pens 
of approximately 4 × 8 m with access to outdoor enclosures with 
soil substrate during the day. To reduce potential environmental 
variation on the development of the gut microbiota, all individuals 
were reared under standardized conditions with ad libitum access 
to food and fresh water during daytime. The chicks received a pre‐
determined plant‐based pelleted diet consisting primarily of corn, 
soybean and alfalfa (ratite prestarter ration, Tables S1 and S2). The 
adult birds were given a pelleted adult version (ratite breeder ration, 
Table S3) and were kept in a different area separate from the chick‐
rearing facility. All procedures were approved by the Departmental 
Ethics Committee for Research on Animals (DECRA) of the Western 
Cape Department of Agriculture, reference no. R13/90.

2.2 | Sample collection

Faecal samples in this study were collected from chicks at the fol‐
lowing ages: weeks 1, 2, 4, 6, 8, and 12 (where week 1 means 7 days 
old, week 2 means 14 days, etc.). In addition, we sampled fresh fae‐
ces from five adult individuals kept in large outside enclosures. The 
sex and age of these adults were not possible to identify, but they 
were sexually mature, breeding individuals. All faecal samples were 
collected in empty plastic 2‐ml microtubes (Sarstedt, cat. no. 72.693) 
and	stored	at	−20°C	within	2	hr	of	collection.	Details	of	sample	collec‐
tion have been described previously (Videvall, Strandh, Engelbrecht, 
Cloete, & Cornwallis, 2018). The ostrich chicks were weighed during 
every sampling event. At the final time point (week 12), the smallest 
chick weighed 6 kg while the largest weighed 30 kg, representing a 
five‐fold difference in body mass (mean = 18 kg). During the course 
of the study, the chicks decreased in number because some were 
euthanized for related studies (Videvall, 2018; Videvall, Strandh, 
Engelbrecht, Cloete, & Cornwallis, 2017; Videvall et al., 2018) and 
several died of natural causes (Videvall, 2018). We selected faecal 
samples from chicks that either survived the entire 3‐month period 
or from healthy chicks that were euthanized (Table S4).

2.3 | DNA isolation, library preparation and 
amplicon sequencing

We prepared sample slurries with guidance from Flores, Henley, and 
Fierer (2012) and subsequently extracted DNA using the PowerSoil‐
htp 96 well soil DNA isolation kit (Mo Bio Laboratories, cat. no. 
12955‐4) as recommended by the Earth Microbiome Project (www.
earth micro biome.org). For full details see Videvall et al. (2018). 
Amplicon libraries for sequencing of the 16S rRNA V3 and V4 re‐
gions were prepared using Illumina fusion primers containing the 
target‐specific primers Bakt_341F and Bakt_805R (Herlemann et 
al., 2011) according to the Illumina 16S Metagenomic Sequencing 
Library Preparation Guide (Part # 15044223 Rev.B). The samples 
were sequenced as 300‐bp paired‐end reads over three sequencing 
runs on an Illumina MiSeq platform at the DNA Sequencing Facility, 
Department of Biology, Lund University, Sweden. A total of 272 
chick faecal samples, five adult faecal samples plus four negative 
samples were part of this study (Table S4).

2.4 | Data processing

The 16S amplicon sequences were quality‐screened using fastqc 
(version 0.11.5; Andrews, 2010) together with multiqc (Ewels, 
Magnusson, Lundin, & Käller, 2016). Primers were removed from the 
sequences using trimmomatic (version 0.35; Bolger, Lohse, & Usadel, 
2014) and the forward reads were retained for analyses. Quality fil‐
tering of the reads was executed using the script multiple_split_li‐
braries_fastq.py in qiime (version 1.9.1; Caporaso et al., 2010). All 
bases	with	a	Phred	score	<25	at	the	3′	end	of	reads	were	trimmed	
and samples were multiplexed into a single high‐quality multi‐fasta 
file.

Operational taxonomic units (OTUs) were assigned and clus‐
tered using deblur (version 1.0.0; Amir et al., 2017). deblur circum‐
vents the problems of clustering OTUs at an arbitrarily threshold by 
obtaining single‐nucleotide resolution OTUs (100% sequence iden‐
tity approach) after correcting for Illumina sequencing errors. The 
resulting OTUs are sometimes called sOTUs or amplicon sequence 
variants, but we refer to them here as OTUs. The minimum reads‐
option was set to 0 to disable filtering by deblur, and all sequences 
were trimmed to 220 bp. We used the resulting OTU table produced 
after both positive and negative filtering, which by default removes 
any reads containing PhiX or adapter sequences, and only retains 
sequences matching known 16S gene sequences. Additionally, PCR‐
originating chimeras were filtered inside deblur (Amir et al., 2017).

Taxonomic assignment of OTUs was performed using the RDP 
Classifier (version 2.2; Wang, Garrity, Tiedje, & Cole, 2007). We re‐
moved from all samples the following OTUs: OTUs present in the 
negative (blank) samples (n = 95), OTUs classifying as mitochondria 
(n = 7), OTUs classifying as chloroplasts (n = 18), OTUs that only ap‐
peared in one sample, and finally OTUs with a total sequence count 
of <10. These filtering steps removed in total ~47,000 OTUs, with 
4,338 remaining for analyses. All samples were retained because 
none exhibited low read coverage (the lowest coverage obtained 
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was 1,799 reads after filtering). Furthermore, the sequence cover‐
age per sample (mean number of filtered reads = 15,480) showed 
no differences across ages (ANOVA: F = 2.01, p = 0.064). The phy‐
logenetic tree was produced in qiime, using fasttree (Price, Dehal, & 
Arkin, 2009). Analyses were evaluated with both rarefied and non‐
rarefied data, which produced extremely comparable results (Figure 
S1). We therefore present the results from the nonrarefied data in 
this study.

2.5 | Data analyses

All analyses were performed in r (version 3.3.2; R Core Team, 2017). 
We calculated OTU richness (observed OTUs), Shannon's H index 
alpha diversity (hereafter referred to as alpha diversity) and Faith's 
weighted abundance of phylogenetic diversity (hereafter referred to 
as phylogenetic diversity) using absolute abundance of reads, and 
distance measures with Bray–Curtis and weighted UniFrac meth‐
ods (Bray & Curtis, 1957; Lozupone & Knight, 2005) on relative read 
abundances in phyloseq (version 1.19.1; McMurdie & Holmes, 2013). 
The effects of age, sex, group, and chick identity on the microbiomes 
of chicks were examined in permutational multivariate analysis of 
variances (PERMANOVA) with weighted UniFrac distances, using 
the adonis function in the vegan r package (version 2.4‐2; Oksanen 
et al., 2017) with 1,000 permutations. Age was evaluated by Z‐trans‐
forming age in weeks and fitting a linear and a quadratic age term. 
Differences in dispersion between age groups were tested with the 
multivariate homogeneity of group dispersions test (betadisper) in 
vegan (Oksanen et al., 2017), followed by the Tukey's honest signifi‐
cant difference method. Microbiome differences across individuals 
within and between age groups were calculated using Bray–Curtis 
distance metrics on relative abundances. All comparisons between 
samples from the same individual were excluded prior to calculating 
distance metrics.

To evaluate bacterial abundances, we first modelled counts 
with a local dispersion model and normalized reads per sam‐
ple using the geometric mean (according to the deseq2 manual; 
Love, Huber, & Anders, 2014). Differential abundances between 

juvenile age groups were subsequently tested in deseq2 with a 
negative binomial Wald test, while controlling for individual iden‐
tity of birds, and with the beta prior set to false (Love et al., 2014). 
The results for specific comparisons were extracted (e.g., week 1 
vs. week 2) and p‐values were corrected with the Benjamini and 
Hochberg false discovery rate for multiple testing (Benjamini & 
Hochberg, 1995). OTUs were labelled as significantly differen‐
tially abundant if they had a corrected p‐value (q‐value) <0.01. 
The test between week 12 juveniles and adults was performed 
without individual identity in the model as this comparison did 
not include any repeated data measures.

We modelled juvenile growth as the weight change per week 
between measurements t and t + 1 in relation to microbial diversity 
at week t, including age and weight at week t as covariates, using 
linear mixed‐effect (LME) models in the nlme r package (Pinheiro, 
Bates, DebRoy, & Sarkar, 2016). Separate models were run for alpha 
diversity, phylogenetic diversity and bacterial richness. For random 
effects, an unstructured (co)variance matrix was fitted to model ran‐
dom intercepts for individuals, random slopes for individuals across 
ages, and the covariance between intercepts and slopes.

To investigate the relationship between specific OTUs and chick 
growth, semipartial Spearman's rank correlation tests were used 
on the sum of the normalized abundance of all OTUs in each family 
during each sampling (weeks 1, 2, 4, 6 and 8) against weight change 
to the next sampling week (weight difference between sampling 
events/number of weeks between sampling events), residualized 
against weight. Correlations were conducted at the level of family 
as 76% of OTUs were missing taxonomic assignments at the level of 
genus or lower, whereas only 27% were missing family assignment. 
Spearman's rank correlation tests were used as OTU abundances 
were highly skewed, and not possible to correct using data transfor‐
mations. Confidence intervals were calculated using bootstrapping 
implemented using the pcor.test function in r package rvaidememoire 
(version 0.9‐69‐3; Hervé, 2018). Data were filtered to only include 
taxa with a minimum abundance of 100 counts and where at least 
10 individuals had nonzero counts. The p‐values were corrected 
with the false discovery rate to q‐values and taxa with q < 0.05 were 

F I G U R E  1   Gut microbiomes show stepwise differences with increasing age of hosts. (a) NMDS of Bray–Curtis distances and (b) PCoA of 
weighted UniFrac distances between samples. Colours indicate age of individuals in weeks and brackets in the PCoA display the percentage 
variance explained by the first two dimensions
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considered statistically significant. Plots were made using ggplot2 
and gplots (Warnes et al., 2018; Wickham, 2009).

3  | RESULTS

3.1 | Age has a major influence on the gut 
microbiota composition of juvenile ostriches

Age explained a major part of the variation observed in the ostrich 
chick faecal microbiome (Figures 1 and S1). There was clear chron‐
ological ordering of samples with age along the first axis of ordina‐
tion in an unsupervised nonmetric multidimensional scaling (NMDS) 
plot of Bray–Curtis distances (Figure 1a) and in a principal coordi‐
nates analysis (PCoA) plot of weighted UniFrac distances (Figure 1b; 
PERMANOVA: R2 = 0.17; p < 0.001), with the microbiota of juveniles 
approaching that of adult individuals as they aged. The microbiota of 
individuals at week 1 showed the largest differences to all other ages 
and clustered separately from the microbiota of individuals at week 
2, which in turn clustered separately from those at week 4 and sub‐
sequent weeks (Figure 1). In addition, there was a significant quad‐
ratic effect of age (R2 = 0.06; p < 0.001), indicating that changes in the 
microbial community with age slowed down as individuals got older 
(Figure S2). As a result, the samples from the oldest juvenile ages 
(weeks 6, 8 and 12) showed the least differences from each other, par‐
ticularly when analysed with weighted UniFrac distances (Figure 1b).

The microbiomes within age groups were always more simi‐
lar to each other than they were to other age groups (Figures 2 
and S2). The degree of variation in the microbiome among indi‐
viduals was similar across ages (multivariate homogeneity test 
of group dispersions: adjusted p = 0.203–0.999), indicating that 
PERMANOVA results were not due to differences in dispersion 

among the age groups. The exception was the specific comparison 
between weeks 2 and 4, which showed that week 4 was signifi‐
cantly more variable (adjusted p = 0.009; see Figure 1a). In line 
with this, our PERMANOVA showed high, but nonsignificant, vari‐
ation between individuals in their microbiota (R2 = 0.19, p = 0.243). 
The sex and group of juveniles did not have any effects on the 
variation in their microbial composition (sex: R2 = 0.003; p = 0.396; 
group: R2 = 0.005; p = 0.081).

Consistent with the analyses of microbial distances between 
ages, we found that the alpha diversity, phylogenetic diversity and 
richness of the gut microbiota increased as individuals became 
older (Figure 3; alpha diversity [LME], age parameter estimate (β) 
SE = 0.08 ± 0.01, F1,205 = 54.66, p < 0.0001; phylogenetic diver‐
sity [LME], age β ± SE = 3.21 ± 0.78, F1,205 = 16.95, p < 0.0001; 
richness [LME], age β ± SE = 26.89 ± 2.06, F1,205 = 170.40, 
p < 0.0001). Interestingly, despite alpha diversity and richness 
being highest in adults, phylogenetic diversity was highest around 
6 weeks of age as early‐life microbiota transitioned to more 
adult‐like microbiota (Figure 3). The age differences in diversity 
measures were also highly significant, even after controlling for 
weight (LMEs with weight as a covariate: alpha diversity, age 
β ± SE = 0.13 ± 0.02, F1,204 = 55.35, p < 0.0001; phylogenetic di‐
versity, age β ± SE = 7.83 ± 1.59, F1,204 = 18.08, p = 0.001; richness, 
age β ± SE = 35.62 ± 4.27, F1,204 = 182.52, p < 0.0001).

3.2 | Colonizations and extinctions of bacterial 
groups occur throughout development

Investigating bacterial composition at different ages showed 
large shifts, especially during the early weeks, with differ‐
ences evident even at higher levels of taxonomy (Figure 4). 

F I G U R E  2   Beta diversity (Bray–Curtis distance) of gut microbiota shows most similarities within age groups. The headers display 
age in weeks and the x‐axes show all age comparisons, with A = adults. Within‐age group comparisons are highlighted in darker colour 
(e.g., distances between all individuals at week 1) and higher values signify more dissimilar microbiomes [Colour figure can be viewed at 
wileyonlinelibrary.com]
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One‐week‐old juveniles had high abundances of Verrucomicrobiae 
and Erysipelotrichi, but by week 2 these classes were already 
highly reduced relative to other bacteria (Figure 4). Furthermore, 
Planctomycetia, Verrucomicrobiae and Gammaproteobacteria 
were practically absent in adults compared to juveniles. From 
around 8 weeks of age chicks started to establish a gut micro‐
biome that resembled that of adults, which involved the recruit‐
ment of Bacilli and Planctomycetia and a community dominated 
by Clostridia (Figure 4). Other taxa had more complicated relation‐
ships with age, such as the Bacteroidia that peaked in abundance 
during week 2 (relative to the other classes) and subsequently de‐
creased in the following weeks, only to increase again into adult‐
hood (Figure 4).

Examining differences in OTU abundance between age groups 
produced a more detailed picture of the bacterial shifts during de‐
velopment. The most prevalent OTUs at different ages belonged to 
Akkermansia muciniphila during week 1 (27.2%), Bacteroidales sp. 
during weeks 2 and 4 (7.1%–11.9%), Clostridiaceae sp. during weeks 
6, 8 and 12 (7.9%–8.6%), and Ruminococcaceae sp. in the adults 
(5.1%; Table S5). The relative abundance of all OTUs became more 
alike over time as individuals aged (Figure S3). For instance, the com‐
parison between week 1 and week 2 showed the least similarities 
in overall OTU abundances, despite having the shortest interval 
between sampling events, while the comparison between week 8 
and week 12 displayed a high similarity (Figure S3). The compari‐
son between week 12 juveniles and adult birds also showed high 
correspondence, but there were several highly abundant OTUs not 
present in the adult gut microbiome and vice versa, indicating that 
further shifts of specific bacteria continued beyond 12 weeks of age 
(Figure S3).

We found a large number of significantly differentially abun‐
dant OTUs when comparing samples closest in time across ages 
(Figure 5: negative binomial Wald tests of normalized OTU abun‐
dances). Specifically, several OTUs were more abundant in 2‐week‐
old juveniles compared to 1‐week‐olds (Figure 5; Table S6), with the 
most significant OTUs coming from the families Ruminococcaceae 

and Christensenellaceae. Furthermore, 16 OTUs matching 
Bacteroidia (families Bacteroidaceae, S24‐7, Rikenellaceae and 
Odoribacteraceae) were more abundant at week 2 relative to week 
1 (Table S6). The analysis between week 2 and week 4 yielded a 
large number of differentially abundant OTUs (n = 498), of which the 
majority (70.7%) were again more abundant in the older age group, 
demonstrating microbial recruitment. Notably, almost half (47.4%) of 
the differentially abundant OTUs were completely absent at week 
2 but were present at week 4, including, for example, OTUs within 
Actinobacteria and Planctomycetia (Table S7). At week 6 there were 
again numerous colonizations (n = 166), mostly from within the 
classes Clostridia and Mollicutes, while some OTUs had gone locally 
extinct (n = 68; or to low enough levels to prevent any detection; 
Table S8). By week 8, extinction (n = 88) and colonization of bacteria 
(n = 80; Table S9) were approximately equal, and by week 12 changes 
in OTU abundance had slowed down with fewer differentially abun‐
dant OTUs relative to week 8 (n = 182; Table S10). The final compar‐
ison between week 12 juveniles and adults yielded 60 significant 
OTUs, of which all except one (Aerococcus sp.) were largely absent in 
adults (Figure 5; Table S11), although this pattern could be a direct 
result of the smaller number of adult samples.

3.3 | Gut microbiota is associated with the 
growth of hosts

Chick growth during the first week after hatching was strongly as‐
sociated with alpha diversity and richness measured at 1 week 
of age (Figure 6; general linear model [GLM] of weight change 
during the first week with hatching weight as a covariate: alpha 
diversity β ± SE = 0.14 ± 0.03, F1,41 = 17.97, p = 0.0001; richness 
β ± SE = 0.001 ± 0.0005, F1,41 = 8.82, p = 0.005). This association 
appeared to be due to acquisition of bacteria during the first week 
as there was no relationship between hatching weight and alpha di‐
versity or richness at week 1 (Figure 6; GLM: β ± SE = 0.008 ± 0.03, 
F1,41 = 0.08, p = 0.78; richness β ± SE = 0.0002 ± 0.0004, F1,41 = 0.21, 
p = 0.65). In contrast, phylogenetic diversity was not associated 

F I G U R E  3   Step‐wise increase of microbial diversity with host age. (a) Richness (observed OTUs), (b) alpha diversity (Shannon index) and 
(c) phylogenetic diversity (Faith's diversity) sampled at different ages. Adults were not included in analyses, but are shown for graphical 
comparison [Colour figure can be viewed at wileyonlinelibrary.com]
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with either hatching weight (GLM: β ± SE = 0.0009 ± 0.0007, 
F1,42 = 1.41, p = 0.24) nor growth during the first week (Figure 6; 
GLM: β ± SE	=	−0.0004	±	0.001,	F1,41 = 0.14, p = 0.71). This result 

suggests that there is a link between the recruitment of bacte‐
ria and juvenile growth during the first days after hatching, but it 
does not involve the establishment of new phylogenetic groups of 

F I G U R E  4   Relative abundances of bacterial groups display different trends with increasing host age. (a) Barplots showing the bacterial 
class composition for every host individual (bars). The headers show age in weeks, with A indicating adult individuals. (b) Boxplots illustrating 
the relative abundances of bacterial classes (log‐transformed + 0.001). The x‐axes show age in weeks, with A indicating adult individuals
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bacteria. Further analyses of bacterial abundances showed that two 
families were significantly associated with growth in the first week: 
Bacteroidaceae, primarily of the genus Bacteroides, was positively 
associated with growth (semipartial Spearman's rank: nindividuals = 44, 
notus = 2,288, rs = 0.51, confidence interval [CI] = 0.24–0.69, q = 0.01) 
and Verrucomicrobiaceae, primarily of the genus Akkermansia, was 
negatively associated with growth (semipartial Spearman's rank: nin‐

dividuals = 44, notus = 660, rs	=	−0.38,	CI	=	−0.65	to	−0.08,	q = 0.01).
After the first week, the positive association between micro‐

bial diversity and juvenile growth disappeared. Over the 12‐week 
period of development, there was a weak negative relationship be‐
tween growth and alpha diversity (LME of weight change per week 
[wt + 1−wt], weight at time t as a covariate: alpha diversity at time t 
β ± SE	=	−0.13	±	0.06,	F1,156 = 4.58, p = 0.03), but not with bacterial 
richness (β ± SE	=	−0.0005	±	0.0004,	F1,156 = 1.61, p = 0.21) or phy‐
logenetic diversity (β ± SE = 0.0006 ± 0.001, F1,156 = 0.28, p = 0.60). 
Furthermore, the relationship between juvenile growth and diver‐
sity did not differ significantly with age (p > 0.12 for the interaction 
between age and all measures of diversity). However, examining 
how the abundance of bacteria in different families at each age was 
correlated with subsequent growth in hosts showed varied relation‐
ships, both across age of chicks and different phylogenetic groups 
of bacteria (Figures 7 and S4). In fact, no clades of bacteria were 
consistently positively or negatively associated with growth at all 
ages, apart from Christensenellaceae, which was weakly positively 
related to growth throughout development (Figure 7). There were 
six families that were significantly correlated with juvenile growth 
at specific ages, all of which were associated with reduced growth 
(Figure 7; Table S12).

Lastly, we examined if the abundance of microbes that were 
correlated to growth could be explained by alpha and phylogenetic 
diversity. We found that the abundance of all six microbial families 

associated with growth varied independently of alpha diversity 
(p > 0.05; Table S13), but that the abundances of S24‐7 at week 2, 
Verrucomicrobiaceae at week 4 and Methanobacteriaceae at week 
8 were all positively correlated to phylogenetic diversity (p < 0.05; 
Table S13). Consequently, the microbes associated with reduced 
growth in hosts were not less prevalent in more diverse communi‐
ties, and in fact they appeared to be more abundant in phylogeneti‐
cally diverse gut communities.

4  | DISCUSSION

Maturation of the gut microbiota during development is a crucial 
process potentially affecting host fitness (Sommer & Bäckhed, 
2013). We found that bacteria colonize the gut of juvenile ostriches 
in a successional manner and that the microbial community develops 
with increasing diversity and complexity as individuals age. Major 
compositional changes in the gut microbiota occurred during devel‐
opment, especially from the first to the second week of life, which 
coincides with a dietary switch from yolk to food. The relationships 
between microbiota and juvenile growth were taxon‐ and age‐spe‐
cific, potentially explaining some of the contradictions reflected in 
previous research. Apart from the initial period after hatching, bac‐
terial abundance and diversity had negative and transient effects for 
growth, indicating that the developmental stage at which the gut 
microbiota is examined is crucial for understanding this relationship.

The gut microbiome of 1‐week‐old ostriches was highly dif‐
ferentiated from that of subsequent ages, with a much lower 
alpha diversity and a unique microbial composition dominated 
by Verrucomicrobiae, Clostridia, Erysipelotrichi and Bacteroidia. 
During the first week after hatching, ostriches are nutritionally de‐
pendent on their internal yolk sac, which is high in fat and protein 

F I G U R E  6   Relative juvenile growth rate during the first week after hatching in relation to (a) alpha diversity (Shannon index), (b) the 
abundance of Bacteroides and (c) the abundance of Akkermansia. Relative growth rate is measured as the change in weight from hatching to 
week 1/hatching weight. The lines represent linear regression lines and the shaded areas show the 95% confidence interval [Colour figure 
can be viewed at wileyonlinelibrary.com]
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F I G U R E  5   Significant differences in OTU abundances between host ages closest in time. Dots show differentially abundant OTUs 
(q < 0.01) between age groups, y‐axes show taxonomic families, and all OTUs have been coloured at the class level. Positive log2 fold changes 
indicate higher relative OTU abundance in the younger age group in each comparison, and negative log2 fold changes indicate higher 
abundance in the older age group. NA = OTUs without family classification
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(Deeming, 1999). After the first week, the yolk has been largely ab‐
sorbed, and they switch to external food sources (Deeming, 1999), 
mainly plant matter that is high in fibre. Diet has been shown to 
have large effects on the gut microbiome (David et al., 2014; Pan 
& Yu, 2014; Waite & Taylor, 2014; Xu, Hu, Xia, Zhan, & Wang, 

2003), so it is likely that the dietary switch during this time has 
a direct impact on the differences seen in the gut community of 
1‐ and 2‐week‐old chicks. One bacterial group that appears to be 
particularly important at this initial stage is Bacteroides, which was 
strongly positively associated with growth directly after hatching. 

F I G U R E  7   Juvenile growth in relation to microbial abundances across families. (a) Heatmap showing the strength of correlations (rs 
red = positive, blue = negative, white = not present) between microbial abundances (the sum of normalized OTU abundances for each family 
at weeks 1–8) and juvenile growth (weight change per week after residualizing against weight). The cladogram illustrates evolutionary 
relationships and the key in the top shows the distribution of rs values. Six microbial families were significantly correlated with juvenile 
growth to the subsequent week: (b) week 1 Peptococcaceae (rs	=	−0.36,	CI	=	−0.58	to	−0.03,	nindividuals = 44, notus = 528, q = 0.04); (c) week 
2 S24‐7 (rs	=	−0.43,	CI	=	−0.64	to	−0.12,	nindividuals = 44, notus = 2,112, q = 0.005); (d) week 4 Verrucomicrobiaceae (rs	=	−0.40,	CI	=	−0.66	
to	−0.12,	nindividuals = 43, notus = 645, q = 0.02); (e) week 4 Anaeroplasmataceae (rs	=	−0.36,	CI	=	−0.57	to	−0.04,	nindividuals = 43, notus = 473, 
q = 0.04); (f) week 8 Streptococcaceae (rs	=	−0.47,	CI	=	−0.73	to	−0.14,	nindividuals = 29, notus = 377, q = 0.007); (g) week 8 Methanobacteriaceae 
(rs	=	−0.39,	CI	=	−0.71	to	−0.005,	nindividuals = 29, notus = 29, q = 0.03). White letters in the heatmap refer to the individual scatter plots. 
Microbial families with empty rows (no rs values at any time point) have been excluded due to graphical size restrictions; a full‐length version 
of this heatmap can be found at Figure S4
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Bacteroides are obligate gut bacteria that are known to actively 
modify their environment, making it more hospitable for them‐
selves and other microorganisms (Wexler & Goodman, 2017), for 
example by reducing oxygen levels (Baughn & Malamy, 2004). In 
chickens, this taxon seems to be more abundant in the later stages 
of chick development (Lu et al., 2003; Oakley et al., 2014). It is pos‐
sible that the recruitment of Bacteroides after hatching plays a key 
role in the establishment of the gut microbiota and the initiation 
of the digestion of external food sources. By the ages 8–12 weeks, 
the dynamic changes of bacterial abundances had stabilized, and 
juveniles had largely obtained an adult‐like gut community, heavily 
dominated by Clostridia (primarily the families Ruminococcaceae, 
Lachnospiraceae, and Clostridiaceae; Figure 4). This bacterial com‐
position is similar to that of other hindgut fermenters (O’ Donnell, 
Harris, Ross, & O'Toole, 2017), and to previous general character‐
izations of faecal and colon microbes in ostriches (Matsui et al., 
2010; Videvall et al., 2018).

One of the most striking changes in the development of the gut 
microbiota was exhibited by the Verrucomicrobiae (Figure 4). This 
class consists of only a single species in our data, Akkermansia mu‐
ciniphila, which dominated the gut of 1‐week‐old ostriches (36.1% in 
total), but was almost nonexistent in adults (0.09%). A. muciniphila is 
a mucin degrader found in a wide variety of animal species (Belzer 
& de Vos, 2012), and has been positively associated with a diet 
rich in polyunsaturated fat in mice (Caesar, Tremaroli, Kovatcheva‐
Datchary, Cani, & Bäckhed, 2015). We are not aware of any study 
linking A. muciniphila with a diet rich in yolk, but its high prevalence 
in 1‐week‐old ostriches digesting yolk and the subsequent rapid 
decline at older ages suggest a possible association. A. muciniphila 
has also been negatively correlated with obesity, diabetes and in‐
flammatory gut diseases in mice and humans, as well as with body 
weight in chickens (Caesar et al., 2015; Derrien, Belzer, & de Vos, 
2017; Everard et al., 2013; Han et al., 2016; Schneeberger et al., 
2015). Our results are consistent with this evidence as we found 
that A. muciniphila was negatively associated with growth in the 
first weeks after hatching. This effect disappeared after 4 weeks of 
age (Figure 7) as the abundance of A. muciniphila subsequently de‐
clined. Although it is not possible to examine the factors regulating 
the abundance of A. muciniphila in our study, there are two potential 
mechanisms that may play a role. First, it may be that A. muciniphila 
is maintained in individuals with prolonged yolk absorption, for ex‐
ample due to slow or poor digestion, which is indirectly associated 
with reduced growth. Second, it is possible that there is a direct link 
between growth and A. muciniphila and that our results represent a 
failure of hosts with low growth rates to regulate their microbiota. 
Further research is clearly needed to establish the mechanistic basis 
of the effects of A. muciniphila in ostriches and whether it is similar 
to those documented in other animals.

Previous research has found contrasting effects of microbial 
diversity on host development and growth. We found that micro‐
bial diversity was strongly positively related to growth just after 
hatching when the gut microbiota was relatively simple. However, 
after the first week of age, alpha diversity was weakly negatively 

associated with growth, in line with multiple studies that have 
shown an increase in animal growth when the diversity of gut bac‐
teria is reduced (Dibner & Richards, 2005; Gaskins et al., 2002). 
High microbial diversity has been suggested to regulate outbreaks 
of pathogenic bacteria by making the community more resilient 
(Sommer, Anderson, Bharti, Raes, & Rosenstiel, 2017). Conversely, 
we found that the abundance of the bacteria associated with 
reduced juvenile growth was either independent or greater in 
communities with higher phylogenetic diversity. This association 
suggests that during development, gut microbiomes with greater 
diversity are not more resilient to bacteria that reduce growth in 
ostriches, and highly diverse communities could even be a source 
of pathobionts. The specific taxa with negative effects on growth 
(Peptococcaceae, S24‐7, Verrucomicrobiae, Anaeroplasmataceae, 
Streptococcaceae, Methanobacteriaceae) have all been previously 
associated with obesity, diabetes and metabolic disease in stud‐
ies of rodents and humans (Clarke et al., 2013; Kang et al., 2014; 
Serino et al., 2012; Zeng, Ishaq, Zhao, & Wright, 2016). Given that 
birds and mammals diverged around 300 million years ago (Kumar 
& Hedges, 1998), our findings suggest that there are potentially 
conserved interactions between vertebrate gut microbiomes and 
their hosts. The mechanisms underlying the relationships be‐
tween community diversity, abundance of specific bacteria and 
host traits, such as growth, clearly require further investigation. 
Nevertheless, our results highlight the importance of examining 
these factors in concert at specific developmental windows, par‐
ticularly when there are major dietary shifts during ontogeny.
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