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Symbioses shape feeding niches and 
diversification across insects

Charlie K. Cornwallis    1  , Anouk van ’t Padje    2,3, Jacintha Ellers    2, 
Malin Klein    2, Raphaella Jackson4, E. Toby Kiers2, Stuart A. West    5 & 
Lee M. Henry    4 

For over 300 million years, insects have relied on symbiotic microbes for 
nutrition and defence. However, it is unclear whether specific ecological 
conditions have repeatedly favoured the evolution of symbioses, and how 
this has influenced insect diversification. Here, using data on 1,850 microbe–
insect symbioses across 402 insect families, we found that symbionts 
have allowed insects to specialize on a range of nutrient-imbalanced 
diets, including phloem, blood and wood. Across diets, the only limiting 
nutrient consistently associated with the evolution of obligate symbiosis 
was B vitamins. The shift to new diets, facilitated by symbionts, had mixed 
consequences for insect diversification. In some cases, such as herbivory, it 
resulted in spectacular species proliferation. In other niches, such as strict 
blood feeding, diversification has been severely constrained. Symbioses 
therefore appear to solve widespread nutrient deficiencies for insects, but 
the consequences for insect diversification depend on the feeding niche  
that is invaded.

Across the tree of life, microbial symbionts have enabled organisms to 
harness new forms of energy, access unobtainable nutrients and out-
source critical functions such as defence1–4. So valuable are symbiotic 
partnerships that they have repeatedly led to organisms becoming 
obligately dependent on each other for survival5. Such interdependence 
between hosts and symbionts has led to the evolution of new levels of 
organismal complexity that have ultimately shaped the diversity of 
life on Earth3,6.

The essential metabolic services provided by symbionts have ena-
bled hosts to expand into previously uninhabitable environments1,4,7. 
For example, sulfur-oxidizing bacteria enable giant marine tubeworms 
to live in deep-sea vents, root-associated fungi helped plants colonize 
land and nutrient-supplementing symbionts have allowed insects to 
live solely on the imbalanced diets of plant sap and vertebrate blood2,8,9. 
However, it is unclear whether there are unifying factors that guide how 
and why symbiotic relationships evolve.

Insects are an excellent system to study the evolution of obligate 
symbiosis. Multiple insect families have acquired microbes to perform 
a range of functions, including defence and nutrition10. Defensive sym-
bionts protect their hosts from attack by natural enemies11, whereas 
nutritional symbioses allow insects to feed on specialized resources 
that lack essential nutrients, such as plant sap, blood (haematophagy) 
and wood (xylophagy)2. It is therefore widely accepted that symbiotic 
partnerships have opened new ecological niches and helped the incred-
ible diversification of insects7. However, previous work has primarily 
focused on the functional role and impact of obligate symbiosis within 
single groups of insects. Consequently, whether we can generalize 
about the ecological causes and consequences of obligate symbiosis 
across different groups of insects is unknown. Are there consistent 
nutrient limitations that have repeatedly selected for the evolution 
of symbioses across different feeding niches? Do symbioses influence 
diversification in a consistent or niche-dependent way?
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symbiosis remarkably well, where over 90% of insect species feeding 
on blood, phloem, xylem and wood have obligate symbionts (Fig. 1 
and Supplementary Tables 1, 2 and 6). Conversely, there are no known 
cases of obligate symbioses in insect families that are predominantly 
predators or fungivores (Fig. 1 and Supplementary Tables 1, 2 and 6).

Only five insect families are known to have endosymbionts with 
defensive functions. This is probably influenced by sampling effort, 
as defensive symbionts residing within insect hosts have only been 
discovered relatively recently11,13, in taxa such as aphids, drosophilids, 
psyllids, crabronids (beewolves) and beetles (reviewed in ref. 14). There 
are well-known examples of defensive mutualisms that reside outside 
of the host (ectosymbionts), such as the antimicrobial producing act-
inobacteria of fungus-farming ants15, but these were excluded as our 
analyses focus on endosymbiosis. Out of the 13 endosymbiont species 
shown to provide insects with protective services, nearly all maintain 
facultative relationships with their hosts. There is only one exception 
in our database, the Asian citrus psyllid, Diaphorina citri, which has 
evolved obligate dependence on a defensive symbiont, which is housed 
in bacteriocytes alongside a putative nutrient provisioning symbiont16.

Several defensive symbioses show evidence of strong vertical 
inheritance and are associated with hosts at high frequencies, such 
as those found in lagriid beetles17, beewolves18 and fungus-growing 
ants19, suggesting they may be near obligate in nature. However, the 
absence of the symbiont in some individuals18,20, existence of multiple 
symbiont strains within the same host individual20 and evidence of 
frequent acquisitions from environmental sources19,21 demonstrates 
that most defensive symbioses have not reached the high degree of 
mutual dependence observed in obligate nutritional associations. 
While more work is clearly needed, these data support the hypothesis 
that selection for protection against natural enemies is too inconsistent 
across generations to favour the evolution of obligate dependence5,11.

Nutrient deficiencies and obligate symbiosis
Our results show that the evolution of obligate symbioses in insects 
is associated with transitions to specialized feeding niches (Fig. 1). 
Studies have shown that symbionts have enabled these transitions by 
synthesizing a range of essential nutrients missing in their hosts’ diet 
including vitamins, carotenoids and amino acids, as well as digestive 
enzymes that aid in nutrient recycling10,22–24. However, it is not clear if 
certain key nutrients are consistently deficient in the diets of insects 
with obligate symbionts across different feeding niches.

We found that only one dietary component was significantly corre-
lated with the presence of obligate symbionts across all feeding niches: 
low levels of B vitamins (Fig. 2; BPMM: phylogenetic correlation −0.32, 
credible interval (CI) −0.54 to −0.09, proportion of iterations above 
or below a test value correcting for the finite sample size of posterior 
samples (pMCMC) = 0.006; Supplementary Table 7). This pattern 
held across hosts with diets that are highly variable in carbohydrates, 
proteins, fats, vitamins and amino acids (Fig. 2 and Supplementary  
Table 7). Examining types of B vitamins further showed that specifi-
cally B5 and B9 are phylogenetically negatively correlated with the 
evolution of obligate symbiosis (Fig. 2 and Supplementary Table 8). 
Different types of B vitamins were, however, highly correlated, indicat-
ing that sets of B vitamins are often concurrently absent from the diets 
of some insects (Extended Data Fig. 2). For example, vitamins B1 and 
B6 were correlated with B9 (Pearson’s correlation coefficients r = 0.89 
and 0.96) and vitamins B2 and B3 were correlated with B5 (r = 0.92 
and 0.64; data on vitamins B7 and B12 had >30% missing data and so  
were not analysed).

No other macro- or micronutrients were significantly correlated 
with obligate symbiosis across insect families (Fig. 2 and Supplemen-
tary Table 7). This is not to say that obligate symbionts are not impor-
tant for provisioning other nutrients, but rather these nutrients are 
restricted to specific niches. For example, essential amino acids are 
deficient in certain feeding niches associated with obligate symbiosis, 

In this article, we address these questions by examining the 
macro-evolutionary patterns of obligate symbiosis across 1,850 
microbe-insect combinations from 402 insect families. Data were col-
lated across bacteria, fungi and protist symbionts with nutritional and 
defensive functions (Supplementary Tables 1–4). First, we estimated 
how often insect lineages within different feeding niches have evolved 
obligate symbiosis, where the host cannot survive without symbionts. 
We are interested in cases where hosts are obligately or highly depend-
ent (effectively obligately) on their symbionts. Obligate dependence 
is ideally proven experimentally, but only a limited number of such 
studies exist5. To allow comparison across a wider range of species, we 
used two criteria to establish putative obligate dependence, hereafter 
referred to as obligate dependence, both of which had to be fulfilled: 
(1) the symbiont is universally present in reproductive females; and  
(2) the insect possesses morphological structures that are pre-
dominantly associated with symbionts being required for survival  
(for example, bacteriocytes10), or where information on symbiont 
housing organs was lacking, data on the impact of symbiont removal 
and patterns of host–symbiont co-speciation were used to determine 
obligate dependence (‘Insect and symbiont data’ in Methods). Known 
parasitic symbionts, such as reproductive manipulators (for example, 
Spiroplasma, Cardinium and Wolbachia), that have not evolved ben-
eficial functions were excluded from our dataset.

Second, we examined the composition of insect diets to determine 
whether specific nutrient deficiencies have consistently led to the 
evolution of obligate symbiosis across different feeding niches. The 
nutritional composition of diets was determined by collating literature 
on the food sources used by adults and juveniles (nfood sources = 362) and 
extracting information on carbohydrates, fats, proteins, essential 
amino acids, non-essential amino acids and vitamins A, B, C and E 
from as many example foods as possible (range 1–24) from nutritional 
databases (‘Nutrient data’ in Methods, Supplementary Table 4 and 
Extended Data Fig. 1). Data on other vitamins were collected but had 
>30% missing data and so were excluded from analyses (‘Nutrient data’ 
in Methods). We differentiate between insect families that specialize on 
single plant-based resources (phloem, xylem or wood) from families 
that exploit various plant parts (phytophagy, referred to here as her-
bivores), as there were large differences in the nutrients of these diets 
(Supplementary Tables 1 and 4). Third, we tested if the acquisition of 
obligate symbionts has increased or decreased host species richness 
after radiating into different feeding niches. We circumvent the prob-
lem of poorly resolved species level phylogenies by reconstructing the 
evolutionary history of obligate symbioses at the family level.

Evolutionary origins of obligate symbiosis
We found at least 16 independent origins of obligate symbiosis spread 
across 89 insect families (Bayesian phylogenetic mixed model (BPMM): 
Fig. 1 and Supplementary Table 5). These origins were estimated on the 
time-calibrated phylogeny12 to date back as far as 336 million years. 
Within insect families, there were also several more recent transitions 
to obligate symbiosis. For example, 15 families were found to contain 
species with and without obligate symbionts (Fig. 1 and Supplementary 
Tables 1 and 2) but without species phylogenies the exact number of 
origins cannot be resolved. Our analyses therefore focus on the deeper, 
family-level origins of symbiosis, while accounting for variation within 
families by modelling the percentage of species within families with 
obligate symbionts (‘Specific analyses’ in Methods).

Reconstructing the ancestral feeding niches of insect families 
showed that obligate symbioses evolved from omnivorous, herbivo-
rous and predatory ancestors (respective percentage of origins esti-
mated using stochastic character mapping (SCM): 75%, 8% and 17%; Fig. 
1 and Supplementary Table 5). Following the acquisition of obligate 
symbionts, 60% of lineages switched to a single food source (phloem 
42%, blood 12%, xylem 6%; Fig. 1 and Supplementary Table 5). This pat-
tern of food utilization explains the current distribution of obligate 
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such as phloem (BPMM: phloem versus background levels β = −1.11, 
CI = −1.53 to −0.67, pMCMC = 0.001), but are enriched in other niches 
with symbionts, such as blood (BPMM: blood versus background levels 

β = 3.25, CI = 2.77 to 3.86, pMCMC = 0.001; Supplementary Table 9). 
Note that all amino acids concentrations were highly correlated across 
insect diets (Extended Data Fig. 3).
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Fig. 1 | The evolutionary origins of obligate symbionts and their association 
with different feeding niches. a, The phylogenetic distribution of obligate 
symbionts across insect families investigated for symbiosis and their feeding 
niches. Turquiose tips and branches represent obligate symbiosis and different 
coloured dots represent different feeding niches. Ancestral feeding niches were 
estimated using SCM, and obligate symbiosis states were estimated using a 

BPMM (Supplementary Table 5; for tree with tip labels, see Extended Data Fig. 4).  
b, The number of times obligate symbiosis evolved in different ancestral feeding 
niches of insects estimated using a BPMM. c, Proportion of species within 
families with obligate symbionts (mean ± standard error of the mean (s.e.m.)) in 
relation to the feeding niches of insects. The average number of species within 
families is given along the x axis.
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Our results are consistent with detailed studies that have demon-
strated the fitness consequences of providing B vitamins to specific 
insect species. For example, the fitness of tsetse flies depends on B9 
and B6 vitamins provided by Wigglesworthia bacteria25,26, and Buch-
nera supplements aphids with B5 and B2 vitamins, with B5 having a 
particularly strong effect on host survival27. Similarly, the Baumania 
symbiont of xylem-feeding sharpshooters has retained the capacity 
to synthesize six B vitamins (all but B3 and B12), and the coordinated 
host–symbiont biosynthesis of B7 and B5 in whiteflies has been shown 
to be critical for host fitness28,29. Dietary studies have also confirmed 
that mutualistic Wolbachia provide essential B vitamins for Cimex 
bed bugs30; and metabolic homeostasis is restored in symbiont-free  
Dysdercus cotton stainers when B vitamins are supplemented, or hosts 
are re-infected with their actinobacterial symbionts31. In addition, 
genome studies have shown that the metabolic pathways to biosyn-
thesize B vitamins have been retained in the genomes of symbionts 
from insects that occupy diverse feeding niches (for example, blood32, 
plant sap33,34 and seeds35), suggesting their widespread importance in 
maintaining symbioses. A useful future step would be to assess whether 
B-vitamin pathways are more highly conserved in symbiont genomes, 
compared with pathways that encode other host-beneficial factors.

Evolutionary transitions to nutrient-deficient 
diets
Our results suggest that B-vitamin deficiencies are widespread and 
important for the evolution of obligate symbiosis in insects. There 
are, however, two evolutionary scenarios for why such transitions 
occur. One possibility is that insects feeding on diets low in vitamin B 
recruited symbionts to supply B vitamins. The alternative is that insects 
first acquired obligate symbionts that could synthesize B vitamins, 
possibly for some other benefit, which then enabled them to invade 
feeding niches where B vitamins were scarce. The question is therefore 
whether the evolution of obligate symbioses were triggered by low B 
vitamins in diets or whether obligate symbioses facilitated specializa-
tion on these diets.

We tested these competing hypotheses by estimating the amount 
of B5 and B9 vitamins in ancestral diets before, and following, transi-
tions to obligate symbiosis. A high phylogenetic signal of B vitamins 
across insects allowed us to relatively accurately estimate ancestral 
values (Supplementary Table 8 and Extended Data Fig. 4). We found 
little evidence that levels of B5 and B9 vitamins were reduced in the 
diets of insects before they acquired obligate symbionts (Fig. 3 and 
Supplementary Tables 10 and 11). Instead, we found that hosts that 
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Fig. 2 | Nutrient deficiencies and the evolution of obligate symbioses.  
a–d, Across all diets, macronutrients (a–c) and essential amino acids (d) were 
not consistently associated with the proportion of species within families that 
had obligate symbionts. e,f, Insect families with diets deficient in B5 (e) and 
B9 (f) vitamins had a significantly higher proportions of species with obligate 
symbionts than families feeding on diets with high levels of B vitamins (B5 
phylogenetic correlation (CI) −0.45 (−0.61 to −0.22), pMCMC = 0.001; B9 
phylogenetic correlation (CI) −0.25 (−0.48 to −0.05), pMCMC = 0.03). Nutrient 

values on x axes are standardized amounts per gram (‘Nutrient data’ in Methods). 
The size of points represents the number of host species (log-transformed) 
examined for obligate symbionts per family. Lines represent logistic regressions 
with 95% confidence intervals (shaded bands) plotted for illustrative purposes. 
Analyses of individual amino acids confirmed that obligate symbiosis was not 
consistently associated with any amino acid deficiencies (‘Obligate symbiosis 
and types of amino acids’ in Methods and Supplementary Table 29).
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recruited obligate symbionts subsequently evolved to specialize on 
diets with low levels of B5 and B9 vitamins (Fig. 3 and Supplementary 
Tables 10 and 11). Once obligate symbioses evolved, shifts to diets 
deficient in B vitamins were much more frequent, particularly for B5, 
where transition rates to low levels of B5 were 30 times higher than for 
lineages without obligate symbionts (Supplementary Table 11).

The importance of obligate symbionts in supplying B vitamins 
was further supported by the loss of obligate symbioses when insects 
switched to diets with elevated B-vitamin levels (Fig. 3 and Supplemen-
tary Tables 10 and 11). Insect lineages with above-average levels of B5 
and B9 vitamins in their diets were more likely to lose their obligate sym-
bionts (Fig. 3a,b and Supplementary Table 11). Our results match with 
observations from specific taxa, where obligate symbiont losses have 
been associated with dietary changes in their insect hosts. In the mealy-
bug genus, Hippeococcus, symbiont losses are thought to be associated 
with nutrient provisioning by Dolichoderus ants, and Typhlocybides 

plant hoppers lost their ancestrally acquired obligate symbionts when 
switching from plant sap to more nutrient-rich parenchyma36.

Symbiont specialization in nutrient provisioning
Given the importance of B-vitamin provisioning by symbionts in insects, 
we examined whether specific lineages of symbiotic bacteria special-
ize in providing B vitamins to hosts. Have hosts relied on a restricted 
set of symbiotic partners, or have a variety of symbionts converged to 
provide B vitamins? To address this question, we constructed a phy-
logeny for symbionts to quantify the amount of variation in dietary B 
vitamins explained by symbiont ancestry and their co-evolutionary 
relationships with hosts.

We found that hosts have evolved dependence on a broad range of 
microbes (Supplementary Tables 12 and 13). Less than 1% of variation 
in B5 and B9 vitamins in host diets was explained by symbiont phyloge-
netic history and the co-evolutionary relationships between symbionts 
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had similar levels of B5 (a) and B9 vitamins (b) in their diets compared with 
lineages that did not evolve obligate symbioses. c,d, After acquiring obligate 
symbionts, lineages evolved diets with significantly lower levels of B5 (c) and 
B9 vitamins (d) (‘non-obligate maintenance versus obligate maintenance’ 
comparison). The evolutionary loss of obligate symbiosis was also associated 
with increases in dietary levels of vitamin B5 and B9 compared with where 
obligate symbiosis was maintained (c,d: ‘obligate maintenance versus obligate 
loss’ comparison). Vitamin B concentrations are standardized amounts per 
gram for each ancestral node, estimated from the diets of extant insect families 
(‘Nutrient data’ in Methods; for reconstructed levels of B vitamins plotted on the 

tree and robustness of estimates to rate shifts in B vitamins, see Extended Data 
Fig. 4). Numbers along the x axis in a and b indicate the numbers of transitions. 
Violin density curves represent the posterior distribution of estimated ancestral 
levels of B5 and B9 vitamins (1000 samples) estimated using a BPMM. The violin 
width corresponds approximately to the most likely estimate of B vitamins. A 
BPMM was used to test for significant differences between transitions (*pMCMC 
<0.05, **pMCMC <0.01, ***pMCMC <0.0001; exact pMCMC values are given in 
Supplementary Table 10): In a and b we tested if the posterior distribution of 
B-vitamin estimates for a given transition was above or below the comparison 
transition, and in c and d we tested if the posterior distribution of the difference 
in B-vitamin estimates for transition comparisons was above or below 0. NS,  
not significant.
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and hosts (BPMM: symbiont phylogeny (% variance) B5 0.08, CI = 0.02 
to 0.15; B9 0.1, CI = 0.03 to 0.2; co-evolutionary interaction (% variance) 
B5 0.06 CI = 0.02 to 0.12; B9 0.09 CI = 0.03 to 0.16; Supplementary 
Tables 12 and 13). Instead, divergent symbiotic lineages appear to have 
become convergently associated with insects feeding on low-vitamin-B 
diets (Extended Data Fig. 5). Following the establishment of obligate 
symbioses, hosts and symbionts tend to co-evolve, as related insect 
families were significantly more likely to be partnered with phylo-
genetically similar symbionts (BPMM: co-evolutionary interaction  
(% variance) 22.65, CI = 10.47 to 37.35; Parafit: P = 0.05; Supplementary 
Tables 14 and 15). These results match with research showing that 
diverse symbiotic bacteria have retained the genes for synthesizing B 
vitamins37, and those insects whose bacteria lose the capacity to provide 
B vitamins recruit new symbiont lineages to compensate for the loss38.

Obligate symbiosis and insect diversification
Finally, we tested if obligate symbioses have influenced patterns of 
diversification across insects. The current paradigm, based on obser-
vations from specific lineages, such as sap-feeding Hemipterans, is 
that the acquisition of symbionts opens up new niches and increases 
host species proliferation39,40. Host–symbiont co-evolution can also 
generate incompatibilities between populations that may increase 
speciation rates4. Dependence on symbionts may, however, ‘trap’ hosts 
in specific niches, leading to the opposite prediction that symbionts 
reduce diversification4. For example, hosts can be restricted to feeding 
on specific resources because of symbiont-assisted specialization41, or 
limited by the sensitivity of their obligate symbionts to environmental 
conditions, such as temperature42,43. Mutation accumulation can also 
degrade symbiont functioning, resulting in hosts being stranded with 
maladapted symbionts that may increase extinction risk44.

Although symbioses are thought to have facilitated adaptive radia-
tions in specific insect lineages7,45, these competing hypotheses have 
not been systematically tested across insects, generating debate over 
the general role of symbiosis in insect diversification. We therefore 
analysed the relationship between obligate symbiosis and species 
richness in three ways: across all families, across families with and 
without obligate symbionts that have the same feeding niche, and 
between sister lineages.

Across all insects, we found that obligate symbiosis was associ-
ated with extreme highs and lows of species richness compared with 
background rates (Fig. 4a and Supplementary Tables 16 and 17). At the 
extreme high, herbivorous insect families with obligate symbionts had 
12 times as many species compared with the average across families 
(Fig. 4a; BPMM: herbivores with obligate symbionts versus background 
species richness 2.75, CI = 0.97 to 4.01, pMCMC = 0.001). At the other 
extreme, extraordinarily low species richness was associated with 
insect families feeding on blood, which had eight times fewer species 
than the average (Fig. 4a; BPMM: blood feeders with obligate symbi-
onts versus background species richness −1.95, CI = −3.64 to −0.26,  
pMCMC = 0.01). This resulted in a 51-fold difference in the number of 
species in herbivorous insect families with obligate symbionts versus 
those in blood-feeding niches. These estimates of species richness were 
after accounting for differences between holo- and hemi-metabolism, 
the age of insect families and insect phylogenetic history, all of which 
can affect the number of species in families12,46.

Obligate symbiosis promotes diversification 
within niches
Patterns of species richness across insects appear to be niche specific 
(Supplementary Table 17). However, within feeding niches, symbionts 

6 19 11 2 6 112 19 134 9 3 60
3

4

5

6

7

8

9

Xyle
m

Phloem
Blood

Wood

Omnivo
ry

Herb
ivo

ry

Fu
ngivo

ry

Predato
ry

 Feeding niche

lo
g 

sp
ec

ie
s 

ric
hn

es
s 

(m
ea

n 
± 

s.
e.

m
.)

Non-obligate NS NS ***
Obligate

a

−5

0

5

25 50 75 100

Obligate symbiosis (% di�erence)

Sp
ec

ie
s 

ric
hn

es
s 

di
�e

re
nc

e 
(lo

g 2 f
ol

d 
ch

an
ge

)

Xylem
Phloem
Blood
Wood
Omnivory
Herbivory
Predatory

b

Fig. 4 | Obligate symbioses and the evolutionary potential for diversification. 
a, Diversification was measured as the number of species within families 
presented on a natural logarithmic scale (mean ± s.e.m.). BPMMs were used 
to test if the species richness of each feeding niche was significantly higher or 
lower than the average of all other niches (*pMCMC <0.05, **pMCMC <0.01, 
***pMCMC <0.0001. Exact pMCMC values are given in Supplementary Table 17), 
and if families with (>50%) and without (<50%) obligate symbionts feeding within 
the same niche had higher or lower species richness (Supplementary Table 17). 
BPMMs controlled for differences in family age, holo- and hemi-metabolism and 
insect phylogenetic history. The number of insect families are given along the 

x axis. b, Sister lineage comparisons showing families with a higher percentage 
of species with obligate symbionts are associated with greater species richness 
(y axis: log2 fold change: 0, no difference; 1, double the number of species; −1, 
half the number of species; Extended Data Fig. 6 shows differences in absolute 
numbers of species). Details of the taxa involved in sister comparisons are 
presented in Supplementary Table 29. Symbols are coloured by the feeding 
niches of the sister families, with colours on the left indicating the feeding niche 
of the family with the lowest rates of obligate symbiosis and the highest on the 
right. Regression line with 95% confidence intervals (shaded band) plotted for 
illustrative purposes. NS, not significant.
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may directly promote diversification if they allow species to exploit 
different resources. For example, in insect families feeding on more 
varied diets, such as generalist herbivores and omnivores, symbionts 
may enable resource partitioning between species, fuelling the specia-
tion process. There were three feeding niches where families with and 
without obligate symbionts could be compared: herbivores, omni-
vores and wood feeders. If true, then families within these niches with 
obligate symbionts should have higher species richness than families 
without them.

We found that herbivorous insect families with obligate symbionts 
had 15 times as many species as families without symbionts (Fig. 4a; 
BPMM: families with versus without obligate symbionts 3.47, CI = 1.57 to 
4.79, pMCMC = 0.001; Supplementary Table 17). Omnivorous and wood 
feeding families of insects with obligate symbionts also had two to three 
times as many species as families that lacked symbionts, but these dif-
ferences were not statistically significant (Fig. 4a; BPMM: omnivorous 
families with versus without obligate symbionts 0.17, CI = −1.08 to 1.34, 
pMCMC = 0.78; wood families with versus without obligate symbionts 
0.13, CI = −2.78 to 3.71, pMCMC = 0.71; Supplementary Table 17).

In support of obligate symbiosis playing a role in promoting 
diversification at finer evolutionary scales, we found that among 
more closely related sister taxa, lineages with higher percentages of 
obligate symbionts (n = 13) were more specious (Fig. 4b; BPMM: per-
centage of species with obligate symbionts 7.43, CI = −0.03 to 12.79,  
pMCMC = 0.05; Supplementary Tables 18 and 19 and Extended Data  
Fig. 6). Our results are consistent with findings from specific taxonomic 
groups. For example, symbionts allowed Curculionidae weevils, now 
one of the most diverse families of insects, to feed and radiate exclu-
sively on plants47,48. Similarly, the success of certain highly specious 
ant lineages has been facilitated by nutrient-provisioning symbionts 
that have allowed them to thrive on primarily plant-derived diets49.

Sensitivity analyses
We examined the robustness of our analyses to different methodologi-
cal approaches. First, we examined the robustness of our estimates of 
obligate symbiosis and ancestral feeding niches to different analyti-
cal approaches (Supplementary Table 20 and ‘The number of origins 
of obligate symbiosis’ and ‘Estimating ancestral feeding niches’ in  
Methods). Second, we tested how inserting families (n = 23) that were 
not included in the published phylogeny12 influenced our results (Sup-
plementary Table 21 and Extended Data Fig. 7). Third, we examined the 
robustness of our results to excluding non-bacterial symbionts and 
families that had multiple co-occurring obligate symbionts (Supple-
mentary Tables 22–24 and Extended Data Fig. 8). Fourth, we repeated 
our analyses using a second dataset restricted to species where depend-
ence on symbionts had been directly studied, rather than inferred from 
microscopy studies on the presence of bacteriocytes within certain 
insect orders and superfamilies (Supplementary Tables 25–27 and 
Extended Data Fig. 9). Fifth, 15 out of the 402 insect families had spe-
cies with and without obligate symbionts. This was accounted for by 
modelling the percentage of species with obligate symbionts within 
families. However, in the transition rate analyses, families had to be 
classified as having obligate symbionts (>50% of species with obli-
gate symbionts) or not (<50% of species with obligate symbionts). 
We tested the sensitivity of these analyses to this binary classification 
by re-running models including only families where 100% of species 
had, or did not have, obligate symbionts (Supplementary Table 28). All 
of these different analyses provided qualitatively and quantitatively 
similar conclusions (‘Sensitivity analyses’ in Methods).

Discussion
Genomic and experimental studies have provided important insights 
into the metabolic function of obligate symbioses for specific insects. 
This previous work has focused on well-studied groups—mostly 
plant-feeding hemipterans containing symbionts with highly reduced 

genomes10,24,50,51, but also herbivorous beetles23,47,52, omnivorous ants53, 
cockroaches54 and blood-feeding insects (flies55,56, bed bugs30 and lice57). 
Our approach complements this work by allowing tests of the impor-
tance of obligate symbioses in overcoming nutrient limitations at a 
much broader taxonomic scale, including lineages where symbioses 
have not been studied in-depth using detailed molecular methods. 
This enables contrasts to be made between insect lineages with and 
without symbionts, circumventing potential biases that arise from 
studying only positive associations.

Our analyses highlight that B-vitamin deficiencies are the primary 
nutrient limitation associated with obligate symbioses. While B vita-
mins are consistently important, this does not mean that other nutri-
tional deficiencies are not important for specific clades. For example, 
certain ant and beetle lineages have evolved tyrosine-supplementing 
symbioses that are thought to help thicken their heavily sclerotized 
cuticles47,53,58. Specialized herbivores have evolved symbioses to solve 
a variety of problems, from including the production of digestive 
enzymes to breakdown of plant cell walls23 and the synthesis of specific 
amino acids missing from plant-based diets35. Similarly, transitions to 
feeding on plant phloem and xylem are well known to be associated with 
essential amino acid provisioning by bacteria in insects2,24,52. These feed-
ing niches are, however, also deficient in B vitamins, a common feature 
of symbiont-associated diets, including those rich in amino acids, such 
as blood feeding. The widespread need for B-vitamin supplementation 
is also reflected in the genomes of symbionts that retain metabolic 
pathways to synthesize B vitamins across a diversity of host feeding 
niches32–35. Further insights into the consistent need for B-vitamin 
supplementation may be gained by extending such genomic analyses 
to compare the synthesis pathways of B vitamins with those of other 
nutrients, such as amino acids, in both symbionts and their insect hosts.

To conclude, it appears possible to make relatively broad infer-
ences about the causes and consequences of obligate symbioses in 
insects. Vitamin B supplementation by microbial partners is wide-
spread in insects and has helped insect hosts to exploit novel food 
resources. In some cases, such as herbivorous insects, the shift to feed-
ing on new resources appears to have facilitated adaptive radiations, 
analogous to textbook examples such as Darwin’s finches59. In other 
cases, such as strict blood feeding, new niches seem to have severely 
constrained diversification. The intricate relationships between hosts 
and their nutritional symbionts therefore appear key to shaping pat-
terns of global insect diversity.

Methods
Data collection
Insect and symbiont data. Literature searches. We compiled a data-
base on insect–microbe symbioses by: (1) searching published litera-
ture using the following key words [order name] OR [family name] AND 
‘symbio’* using the search engines Web of Science and Google scholar 
during 2015–2017 and again in 2020, (2) searching prominent reviews 
(for example, Ries60, Schneider61, Müller62, Buchner36, Douglas63, Abe 
et al.64, Bourtzis and Miller65–67, Baumann68 and Baumann et al.69) and 
(3) forward and backward searches from the resulting papers. A full 
list of the papers screened can be found in Supplementary Table 2.

The insect families included in the literature search were those 
listed in Bouchard et al.70, Davis et al.71 and Rainford et al.12, and those 
included in published phylogenies investigating insect biodiversity: 
Hedges et al.72, Misof et al.73 and Rainford et al.12. For symbiont detec-
tion, we considered only studies using methods capable of capturing 
phylogenetically diverse bacteria species (for example, deep-coverage 
sequencing, or cloning, using ‘universal’ 16S ribosomal RNA (rRNA) 
primers), or microscopy studies investigating whole insects for the 
presence of symbionts.

Specific clades of insects are known to carry the same obligate 
symbionts due to strict vertical transmission (Supplementary Table 2  
‘reference obligate criteria’). We therefore searched Genbank to recover 
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all insect species that have been associated with specific vertically 
transmitted symbionts (identified taxonomically by symbiont genus 
name in most cases) to increase our coverage of host–symbiont associa-
tions (Supplementary Table 3). Search results were checked manually 
to ensure host species belonged to the insect clade known to harbour 
the symbiont (Supplementary Table 3). In families that have species 
both with and without obligate symbionts, we considered only spe-
cies directly studied for obligate symbiosis. Vertically transmitted 
symbionts were included only in analyses of host evolution (‘Specific 
analyses’ in Methods). In analyses of host–symbiont co-evolution 
we were interested in testing how host and symbiont phylogenetic 
history influence symbiont recruitment (‘Nutrient deficiencies and 
host–symbiont co-specialisation’ in Methods). Vertically transmitted 
symbionts were excluded as they inflate the signature of co-evolution, 
not because of symbiont recruitment, but because of inheritance from 
a common ancestor.

Data inclusion and exclusion. The aim of our paper was to investigate 
the evolution of beneficial obligate symbioses. We therefore excluded 
studies: (1) on parasitic symbionts, such as those that manipulate host 
reproduction (for example, Spiroplasma, Cardinium and Wolbachia) 
that have not evolved beneficial functions; (2) that failed to screen the 
entire insect (for example, performed only insect gut analyses); and 
(3) on symbionts with presumed beneficial functions, but that lacked 
data needed to assess our obligate criteria (see below). Fungal and 
protist symbionts were included where data on host dependency were 
available. Analyses of host–symbiont co-evolution were restricted to 
symbionts for which a phylogeny could be constructed (bacteria with 
16S rRNA genetic data: for details, see ‘Insect and symbiont phylog-
enies’ in Methods).

For each insect–microbe association we collected data on: the 
insect species; juvenile and adult insect diets; whether insects were 
holo- versus hemi-metabolous; the identity of symbionts; symbiont 
domain; whether symbionts were intra- or extracellular; whether 
symbionts were housed within specialized structures (for example, 
bacteriocytes); whether symbionts are thought to have a defensive 
or nutritional function in nature; and whether insects were obligately 
dependent on symbionts (for assessment criteria, see below).

Criteria for assessing obligate symbiosis. We are interested in cases 
where hosts are obligately or highly dependent upon their symbionts 
(effectively obligate). Obligate dependence is usually proven experi-
mentally, but only a limited number of such studies have been carried 
out5. Consequently, to allow comparison across a wider range of spe-
cies, we used the following criteria as indicators of putative obligate 
dependence, both of which must be fulfilled: (1) Symbiont is universally 
present in reproductive females; and (2) symbionts are housed in a 
bacteriome (or mycetome) within bacteriocytes (specialized symbiont-
housing cells), or insect-symbiont phylogenies are concordant, or 
symbiont removal results in significant reduction in host fitness.

In well-studied systems, insects with bacteriocytes typically 
cannot survive without their symbionts under natural conditions, as 
observed in aphids74, coccids75, carpenter ants76, cockroaches77, anobiid 
beetles78, cerambycid beetles79, tsetse flies80 and lice81 (for examples 
under other conditions, see refs. 75,82,83). In these cases, stable mutual 
dependence is evident from extreme partner fidelity, genetic uniform-
ity of symbionts within a host species, and concordance of host and 
symbiont phylogeny as the microbe is faithfully maternally transmitted 
from a common ancestor (reviewed in refs. 10,84). Consequently, spe-
cies where a single symbiont is not universally present in all reproduc-
tive females, or where specialized symbiont housing organs are lacking 
were classified as not having obligate symbionts. If symbionts were 
universally present, but cophylogenetic and/or host fitness data were 
unavailable the relationship was classified as unresolved and were not 
included in analyses.

Data on individual species were used to estimate the percentage 
of species in each family that have evolved dependency on symbionts, 
which is summarized in Supplementary Table 1. Data on the insect spe-
cies examined, their associated symbionts and the criteria to assess 
dependency are provided in Supplementary Table 2.

Feeding niche classification. The feeding niches of species were 
classified using information on their diets. Omnivores were defined as 
species that feed on both plant and animal matter, or those that scav-
enged on detritus. Due to large differences in the nutrient contents of 
different plant tissues, insect species that specialize on phloem, xylem 
and wood (xylophagy) were considered separately from species that 
exploit non-vascular/non-woody plant tissues (for example, leaves, 
flowers, fruits, seeds and/or root tips), which we refer to as generalist 
herbivores (also known as phytophagous).

The feeding niches of families were classified using the infor-
mation on species feeding niches (Supplementary Table 1). Families 
were described as having omnivorous diets if they contained species 
that were omnivores/detritivores, or if single species within families 
utilized multiple food sources that combined plant, animal or fungal 
material. Families containing species that fed on multiple plant tis-
sues were classified as generalist herbivores. Families were assigned 
to the feeding categories of haematophagy, phloem feeding, xylem 
feeding and predatory where most species in the family, if not all, feed 
exclusively on those resources. Families assigned as xylophagous were 
those where most species fed on wood as their primary food source. In 
cases where species-specific diets were not available, we based diets 
on family-level feeding habits published in books and reviews listed in 
Supplementary Table 2.

Nutrient data. To estimate the nutrient composition of each insect 
family, we performed the following steps:

	(1)	 The food types (for example, fruit and roots) utilized by adults 
and juveniles of all species in our obligate symbiosis dataset 
were collected from published literature (Supplementary Table 
2). Literature was searched using the terms [species name] and 
[adult diet] or [ juvenile diet] in Web of Science and Google 
Scholar. Where possible, we cross-validated diet assignments 
using multiple published studies (Supplementary Table 2).

	(2)	 The nutrient composition of all food types that species were 
found to feed on (Nfood types = 362) was estimated by searching 
dietary databases for as many examples of those food types as 
possible (range per food type 1–24, total number of nutrient es-
timates 5,446; Supplementary Table 4). From dietary databases, 
we extracted information on the concentration of carbohy-
drate, fat, protein, essential amino acids (histidine, isoleucine, 
leucine, lysine, methionine, phenylalanine, threonine, trypto-
phan and valine), non-essential amino acids (arginine, cystine, 
glycine, glutamic acid, proline and tyrosine) and vitamins (A, 
B, C, D, E, K, choline and betaine). Nutrient contents were from 
a range of foods and are therefore an approximation of insect 
diets. Where possible, micronutrients were broken down into 
their subcomponents, for example, individual B vitamins. There 
were substantial missing data for vitamins C, D, K, choline and 
betaine (>30% of insect families missing data), which were 
excluded from analyses.

	(3)	 For each food type, the median concentration of each nutrient 
across example foods was calculated. Median nutrient values 
were combined with information on insect diets to calculate 
a nutrient profile for adults and juveniles of each species 
(Extended Data Fig. 1). For omnivorous species, nutrients were 
calculated by averaging across all foods.

	(4)	 Estimates of the nutrients in the diets of each species were 
calculated by taking the median across adults and juveniles.
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	(5)	 Estimates of the dietary nutrients for each family were calcu-
lated by taking the median across all species within families. In 
cases where species-specific diets were not available, we based 
diets on family-level feeding habits published in books and 
reviews listed in Supplementary Table 2.

Standardization of nutrient data. Reported data on nutrients (carbo-
hydrates, fats, proteins, amino acids and vitamins) were converted to 
amount per gram. For some foods, however, this was wet weight and 
for others it was dry weight. We therefore standardized nutrient values 
to make them comparable across food types. Values were standardized 
by dividing each nutrient by the mean weight of each food type (for 
details, see R script ‘DataConstruction.R’). The mean was used rather 
than the sum to avoid the non-independence of percentages when 
analysing all nutrients together.

Diversification. Diversification is typically modelled using three dif-
ferent approaches when species level phylogenies are not available: (1) 
diversification rates are calculated using clade age and species richness 
information (also known as ‘age richness rate’); (2) raw estimates of 
species richness are used; and (3) species richness of sister taxa are 
compared. It has recently been shown that calculating diversification 
rates should be avoided when examining patterns of biodiversity85. We 
therefore examined patterns of diversification using species richness, 
including family age as an explanatory variable (‘Species richness and 
obligate symbiosis’ in Methods), and by testing differences in species 
richness between sister lineages. The ages of families were extracted 
from the time-calibrated Rainford phylogeny12. Data on the number 
of extant species in insect families (species richness) were taken from  
ref. 12. It is likely that species richness for all insect families is underesti-
mated as new species are continually being described. Our analyses do 
not, however, rely on exact absolute numbers of species, but rather that 
estimates are representative of relative species richness across families, 
which has been argued as reasonable46. Variation in estimates of species 
richness, for example, due to differences in research effort, are also 
unlikely to correlate to the proportion of species with obligate sym-
bionts, likely adding noise to our results rather than systematic bias.

Insect and symbiont phylogenies
Insects. Our analyses were conducted using the dated insect phylogeny 
published in ref. 12. The tree was constructed using maximum likeli-
hood (RAxML) and dated with a relaxed molecular clock in MrBayes 
calibrated with 86 fossils12. A single consensus tree was published, and 
therefore our analyses do not account for uncertainty in tree topol-
ogy or branch lengths. A useful next step will be to incorporate tree 
uncertainty into analyses, which can be done, for example, by integrat-
ing results over a sample of candidate trees. More in-depth details of 
topological uncertainties and dating methods are available in ref. 12.

Families that lacked data on obligate symbioses were pruned from 
the tree. There were 23 families for which there were data on obligate 
symbioses that were not included in ref. 12. We therefore added these 
families to the phylogeny at branches corresponding to published 
sister taxa (Supplementary Table 1) using the bind.tip function in the R 
package ‘phytools’86 (for details, see R script ‘Rainford_adding_tips.R’). 
Added families were not included for diversification analyses due to 
uncertainty of the age of these families.

Symbionts. We estimated the phylogenetic relationships for bacterial 
symbionts for which genetic data were available. A ~1,500 bp region 
of the bacterial 16S rRNA gene downloaded from the SILVA RNA data-
base was aligned with MUSCLE and edited in the alignment software 
Geneious 8.1.8 (https://www.geneious.com). We constructed a maxi-
mum likelihood phylogeny for the bacterial lineages using the on-line 
PhyML server87, and the best-fitting models of evolution were estimated 
using the Aikake information criterion. The symbiont phylogeny was 

bootstrapped 100 times and rooted to Thermus thermophilus, which 
is basal to all the bacterial lineages presented in this study.

General statistical methods
Data were analysed using Bayesian phylogenetic mixed models with 
single (BPMM) and multiple response variables (MR-BPMM), SCM 
and transition rate models with Markov chain Monte Carlo (MCMC) 
estimation. In this section we provide general details of modelling 
approaches, and in ‘Specific analyses’ in Methods, we outline the 
details of the analyses conducted. All analyses were performed in R 
4.1.3 (ref. 88), apart from transition rate models that were conducted 
in BayesTraits V4 (ref. 89). Continuous response and explanatory 
variables were Z-transformed before analyses (mean 0, standard 
deviation 1).

BPMMs. Model construction, parameter estimates and assessing 
significance. To estimate phylogenetic signature, co-evolutionary 
relationships and ancestral trait values we used BPMMs and MR-BPMMs 
with MCMC estimation in the R package MCMCglmm90. Obligate sym-
biosis was analysed as the number of species with and without obligate 
symbionts (proportion) within each family using a binomial error 
distribution with a logit link function. Analysing obligate symbiosis 
in this way enables variation in the number of species examined for 
obligate symbionts across insect families to be accounted for. Nutrient 
concentrations were Z-transformed before analysis and modelled as 
Gaussian response variables and species richness was modelled using 
a Poisson error distribution with log link function.

The global intercept was removed from MR-BPMMs to allow trait 
specific intercepts to be estimated. Parameter estimates from models 
are presented as posterior modes with 95% CIs, together with approxi-
mate P values (pMCMC)90.

The non-independence of data resulting from phylogenetic relat-
edness between insect hosts and phylogenetic relatedness between 
symbiont lineages was modelled using random effects. For phylo-
genetic effects we fitted a variance–covariance matrix constructed 
from the insect and bacteria phylogenies. Phylogenetic and residual 
correlations between traits were calculated using the variance and 
covariance estimates from unstructured phylogenetic and residual 
variance–covariance matrices. We estimated the amount of variation 
in response variables explained by random effects (RE), including 
phylogenetic effects, as the intraclass correlation coefficient on the 
latent scale estimated as

Vi/VRE + Ve

where Vi is the focal random effect, VRE is the sum of all random effects 
and Ve is the residual variance on the latent scale. For binomial error 
distributions Ve was calculated as the observed residual variance plus 
the variance associated with the link function (logit = pi2/3; for discus-
sion, see refs. 91,92).

Prior settings. For random effects we began prior selection by assess-
ing model convergence using inverse-gamma priors (V = diag(n), 
nu = n − 1 + 0.002, where n was equivalent to the number of response 
traits). If the mixing properties of the MCMC chain were poor, which 
was often the case for binomial response variables, we examined param-
eter expanded priors (V = diag(n), nu = n − 1, alpha.mu = rep(0, n), 
alpha.V = diag(n) × 252) (ref. 92). For fixed effects the default priors in 
MCMCglmm (independent normal priors with zero mean and large 
variance (1010)) were used apart from in models with binomial response 
variables where a prior of mu = 0, V = σ2 units + π2/3 was specified. This 
is approximately flat on the probability scale when a logit link function 
is defined90,93, and in all cases improved the mixing of chains. The final 
prior settings used for each analysis are specified in the supplementary 
R code (R script ‘Analyses.R’).
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Model convergence. Models were run for 2 million iterations with a 
burn-in of 1 million iterations, and chains were sampled every 1,000 
iterations. We examined the convergence of models by repeating 
each analysis three times and examining the correspondence between 
chains using the R package ‘coda’94 in the following ways: (1) visually 
inspecting the traces of the MCMC posterior estimates and their over-
lap; (2) calculating the autocorrelation and effective sample size of the 
posterior distribution of each chain; and (3) using Gelman and Rubin’s 
convergence diagnostic test that compares within- and between-chain 
variance using a potential scale reduction factor. Potential scale reduc-
tion factor values substantially higher than 1.1 indicate chains with 
poor convergence properties. For convergence checking, see R script 
‘ModelCheckingCombining.R’.

Transition rate models
SCM. SCM was used to estimate ancestral states of obligate symbiosis 
and feeding niches across the insect phylogeny in the R package ‘phy-
tools’86. In brief, this approach calculates the conditional likelihood 
that each ancestral node is in a given state depending on the estimated 
transition rate matrix (Q) between states and the length of the branch 
associated with that node. On the basis of these conditional likelihoods, 
ancestral states at each node are stochastically simulated and used in 
combination with observations at the tips to reconstruct a character 
history along each branch. Each character history is simulated using a 
continuous-time Markov chain where changes between states and the 
time spent in each state are modelled as a Poisson process (for more 
details, see ref. 95).

BayesTraits. BayesTraits V4 was used to reconstruct ancestral values 
of feeding niches and examine co-evolutionary relationships between 
B vitamins and obligate symbiosis (for details, see ‘Specific analyses’ 
in Methods). We used hyper priors where values are drawn from a uni-
form distribution with a range 0 to 10 to seed the mean and variance of 
an exponential prior to reduce uncertainty over prior selection89. We 
ran each model three times for a total of 11,000,000 iterations with a 
burn-in of 1,000,000 iterations and sampled every 1000 iterations. We 
examined the convergence of models in the same way as ‘Transition 
rate models’ in Methods.

Bayes factors (2(log marginal likelihood of complex model − log 
marginal likelihood of simple model)) were used to test if models where 
traits were allowed to co-evolve provided a better fit to the data than 
models that assumed independent evolution. To calculate the log mar-
ginal likelihood, we used the stepping-stones procedure as described 
in the BayesTraits V4 manual where 100 stones were run for 1,000 
iterations each. Bayes factors over 2 are considered to offer positive 
evidence, over 5 strong evidence and over 10 very strong evidence89. 
To test whether transition rates were significantly different from each 
other, we calculated the posterior mode, 95% CIs and pMCMC value 
of the posterior distribution of differences between transition rates.

Specific analyses
Evolutionary history of obligate symbioses. The number of ori-
gins of obligate symbiosis. The probability of each node in the insect 
phylogeny having an obligate symbiont was estimated using a BPMM 
with the proportion of species in families with obligate symbionts as 
a response variable. The posterior probability of each node having  
obligate symbionts was estimated using the ‘predict’ function in  
MCMCglmm and nodes with a posterior probability greater than 0.5 
were classified as ‘obligate’. We found support for 16 origins and 8 losses 
of obligate symbiosis.

We examined the robustness of the estimated number of origins 
and losses of obligate symbiosis using SCM. As SCM requires categorical  
states (obligate versus non-obligate), insect families (n = 402) were 
classified as having an obligate symbiosis where over 50% species in 
families had symbionts. Data on obligate symbiosis were used to build 

1,000 stochastic character maps across the insect phylogeny using 
an all-rates different Q matrix estimated with MCMC. Nodes were 
classified as having obligate symbionts if the proportion of the 1,000 
stochastic character maps was above 50%. We found high correspond-
ence between the SCM and BPMM analyses: 98% of ancestral states 
had the same predicted state of obligate symbiosis across analyses, 
indicating that our results are robust to different statistical approaches 
(Supplementary Table 20).

Estimating ancestral feeding niches. Ancestral feeding niches were 
estimated using SCM. Data on the feeding niches of insect families 
(n = 402) were used to build 1,000 stochastic character maps across 
the insect phylogeny using an equal-rates Q matrix estimated with 
MCMC. Ancestral estimates of nodes were assigned according to the 
feeding niche with the highest proportion of the 1,000 stochastic 
character maps. Transitions between feeding niches were identified 
where ancestral and descendant nodes were in different states (Sup-
plementary Table 5).

We examined the robustness of ancestral feeding niches estimated 
using SCM by performing a second set of ancestral reconstructions. We 
used the MULTISTATE module in BayesTraits V4 with reversible-jump 
MCMC estimation and compared them with the estimates gained by 
SCM. There was very good correspondence between SCM and MULTI-
STATE, with 94% of ancestral nodes predicted to have the same feeding 
niche (Supplementary Table 20).

Rates of obligate symbiosis across different feeding niches. The 
probability that insects with different feeding niches had obligate 
symbionts was modelled using a BPMM with the proportion of spe-
cies in families with obligate symbionts as a response variable. The 
feeding niche of each family was fitted as an eight-level fixed effect 
(Supplementary Table 6). To determine if rates of obligate symbiosis 
were significantly different across niches, we calculated the pairwise 
differences between niches and examined if the 95% CIs spanned 0 
(Supplementary Table 6).

Nutritional deficiencies and the evolution of obligate symbiosis. 
Phylogenetic correlations between obligate symbiosis and nutrients. 
The phylogenetic correlations between obligate symbiosis and nutri-
ents within diets was estimated using a MR-BPMM with the proportion 
of species in families with obligate symbionts and concentrations of 
carbohydrate, fat, protein, essential amino acids (sum of histidine, 
isoleucine, leucine, lysine, methionine, phenylalanine, threonine, 
tryptophan and valine), non-essential amino acids (sum of arginine, 
cystine, glycine, glutamic acid, proline and tyrosine), vitamin A, vitamin 
B (sum of individual B vitamins) and vitamin E as response variables 
(Supplementary Table 7). For analyses of individual amino acids, see 
‘Obligate symbiosis and types of amino acids’ in Methods and Sup-
plementary Table 29. There were missing values for some nutrients 
for some families in our dataset (Supplementary Table 4). In BPMMs, 
missing data are permitted in response variables and are predicted 
with an accuracy relative to the phylogenetic signature in traits and 
magnitude of trait correlations. This can enable missing values to be 
predicted with high accuracy93,96. All nutrients had high phylogenetic 
signature (phylogenetic heritability (phylo H2) 0.71–0.96; Supplemen-
tary Table 7), and therefore nutrients with up to 30% missing values 
were included in analyses (vitamin A = 21%, vitamin E = 29%; all other 
nutrients had less than 5% missing data).

Differences in the nutrient contents of feeding niches. Differences 
in the nutritional composition of feeding niches were estimated 
using a MR-BPMM with carbohydrate, fat, protein, essential amino 
acids, non-essential amino acids, vitamin A, vitamin B and vitamin E 
as response variables. To test if nutrient levels of each feeding niche 
differed from background rates, we sequentially fitted two-level factors 
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of focal feeding niche versus all other niches as a fixed effect (Supple-
mentary Table 9).

Phylogenetic correlations between obligate symbiosis and B vita-
mins. The phylogenetic correlations between obligate symbiosis and 
individual B vitamins were analysed using a MR-BPMM with the propor-
tion of species in families with obligate symbionts and concentrations 
of vitamins B5 and B9 as response variables (Supplementary Table 8).  
Data on vitamins B7 and B12 were not analysed as there were miss-
ing values for over 30% of insect families. Data on B1, B2 and B3 were 
highly correlated with vitamin B5 levels (r > 0.9), but there were more 
data on vitamin B5. As a result, only vitamin B5 was analysed, but it is 
worth noting that B1, B2 and B3 may contribute to any association with 
obligate symbiosis.

Nutrients and the gains and losses of obligate symbiosis. Ancestral B 
vitamins in relation to the gains and losses of symbionts. We examined 
how levels of B5 and B9 vitamins differed between the ancestors of fami-
lies with and without obligate symbionts using a two-step approach: 
first, we used the output of the model in ‘The number of origins of 
obligate symbiosis’ in Methods to classify nodes as: (1) non-obligate 
node with non-obligate descendants (Non to Non); (2) non-obligate 
node with at least one obligate descendant (Non to Ob); (3) obligate 
node with obligate descendants (Ob to Ob); and (4) obligate node with 
at least one non-obligate descendant (Ob to Non). Second, node classifi-
cations were entered as a four-level fixed factor in an MR-BPMM with B5 
and B9 vitamin concentrations as response variables (Supplementary 
Table 10). B5 and B9 vitamin levels were compared across nodes that 
preceded the origin (1 versus 2), maintenance (1 versus 3) and loss of 
obligate symbiosis (3 versus 4). Unstructured phylogenetic and residual 
variance–covariance matrices were fitted as random effects with the 
phylogenetic covariance matrix being linked to node labels.

To account for uncertainty in our node classifications, we repeated 
the analysis 100 times, each time reclassifying nodes as ‘obligate’ 
or ‘non-obligate’ by resampling from the posterior distribution of 
model 4.1.1. Posterior samples from across the 100 models were com-
bined. Each model was run for 1,100,000 iterations with a burn-in 
of 1,000,000 iterations and a thinning interval of 10,000 samples, 
which across the re-samplings resulted in 1,000 posterior samples (100 
re-samplings × 10 samples per resampling). To verify that our estimates 
of B vitamins were robust to rate shifts in B vitamins across the tree, we 
compared our BPMM estimates with phylogenetic ridge regression 
models that allowed for rate shifts97. We found high correspondence 
between estimates from BPMM and phylogenetic ridge regression 
models and between BPMM estimates and actual B vitamin values for 
insect families (Extended Data Fig. 4).

Transition rates between obligate symbiosis and B vitamins. We 
tested if models that allowed for co-evolution between obligate sym-
biosis and B5 and B9 vitamins better explained our data than models 
that assumed independent evolution of each trait using transition rate 
models in BayesTraits. Co-evolution was modelled using an all-rates 
different Q matrix with separate models run for B5 and B9 vitamins. 
For transition rate models, only binary classifications can be modelled. 
Insect families were therefore classified as obligate (>50% of species 
within families have obligate symbionts) and non-obligate (<50% of 
species within families have obligate symbionts), and having high and 
low B5 and B9 vitamins. For B-vitamin classifications, two different 
cut-offs were analysed to establish the sensitivity of our results to dif-
ferent thresholds: above and below the 25% and 50% quantile for high 
and low B vitamins, respectively (Supplementary Table 11). It was not 
necessary to examine the sensitivity of our results to the classification 
of obligate symbiosis as 96% of 402 insect families had 100% of species 
with or without obligate symbionts. Reversible-jump MCMC models 
were also run to further test if transitions occurred (percentage of 

models where transition rate was above 0) and if transition were dif-
ferent from each other (percentage of models where transition rates 
were assigned to different rate categories).

Nutrient deficiencies and host–symbiont co-specialization. 
Host–symbiont interactions and the evolution of obligate symbio-
sis. To examine how obligate symbiosis has been influenced by the 
co-evolutionary history between insects and bacteria, we constructed 
a dataset of pairwise combinations between all insect families and all 
symbionts (excluding vertically transmitted symbionts). For each com-
bination, the number of insect species within a family with a particular 
obligate symbiont versus the number of species sampled without that 
symbiont was calculated and analysed using a BPMM with a binomial 
error distribution. This enabled differences in the sampling effort 
across different insect–bacteria associations to be accounted for. 
Whether symbionts were intra- and extracellular was included as a 
two-level fixed effect. Three different variance–covariance matrices 
were fitted as random effects to quantify the amount of variation in 
obligate symbiosis explained by: (1) insect hosts independent of their 
phylogenetic history (‘h’), for example, certain hosts are more likely to 
form obligate relationships than others; (2) insect hosts phylogenetic 
history (‘[h]’), for example, certain host lineages are more likely to 
form obligate relationships than others; and (3) phylogenetic inter-
actions between hosts and symbionts (‘[hs]’), for example, particular 
host phylogenetic lineages are more likely to form obligate symbi-
oses with particular bacterial phylogenetic lineages (Supplementary  
Table 14). For details of model fitting, see ref. 98 (the variance–covari-
ance matrices outlined in ref. 98 that relate to the number of hosts 
symbionts associate with were not fitted in models as each symbiont 
lineage was found in only one insect family).

To further examine whether phylogenetically related lineages of 
bacteria are more likely to form obligate symbioses with phylogeneti-
cally related lineages of insects, we used parafit in the R package ‘ape’ 
(Supplementary Table 15). This tests the correlation between host- and 
symbiont-shared branch lengths against a randomized distribution 
generated from 1,000 permutations of the data99.

Host–symbiont interactions and levels of B vitamins in insect diets. 
To test if specific lineages of symbiotic bacteria specialize in provid-
ing B5 and B9 vitamins to hosts, we used the same BPMM approach 
described in ‘Host–symbiont interactions and the evolution of obligate 
symbiosis’ in Methods. We estimated variation in levels of B vitamins 
(Gaussian responses) explained by h, [h], [s] and [hs]. Separate models 
were run for B5 and B9 vitamins, and data were restricted to combina-
tions of hosts and bacteria that formed obligate symbioses (Supple-
mentary Tables 12 and 13).

Obligate symbiosis and diversification. Species richness and obligate 
symbiosis. The relationship between obligate symbioses and species 
richness was estimated using an MR-BPMM with the proportion of 
species in families with obligate symbionts and species richness as 
response variables. Family age and whether insect families were holo- or 
hemimetabolous (two-level factor previously shown to influence diver-
sification rates12) were fitted as fixed effects (Supplementary Table 16).

Species richness across symbiont-associated feeding niches. To 
test if species richness differed between insect families with and with-
out obligate symbionts occupying different feeding niches, a BPMM 
with species richness as a response variable was used. Each insect 
family was classified according to whether it had obligate symbionts 
(>50% of species with symbionts) and its feeding niche (11-level factor), 
which was fitted as a fixed effect along with family age and holo–hemi 
metabolism (Supplementary Table 17). To test if species richness of 
each obligate symbiosis-feeding niche combination differed from 
background levels, we re-ran models fitting two-level fixed factor of 
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the focal obligate symbiosis-feeding niche combination versus all other 
data (Supplementary Table 17).

Species richness and obligate symbiosis among sister taxa. Sister 
comparisons were extracted from ref. 12 phylogeny using the ‘extract_
sisters’ function in the R package ‘diverge’100 (Supplementary Table 30). 
We analysed data on all sister comparisons (n = 123) using a BPMM to 
test if feeding niche and obligate symbiosis was related to species rich-
ness at a finer taxonomic scale than in ‘Species richness and obligate 
symbiosis’ in Methods. Species richness was the response variable and 
the percentage of species within families with obligate symbionts (% 
logit transformed), age of the sister comparison (million years) and 
feeding niche were included as fixed effects. The non-independence 
of data from sister taxa was modelled by including sister pair identity 
as a random effect and the non-independence of sister pairs across 
the phylogeny was modelled by including node identities of each 
sister comparison linked to the phylogeny as a random effect (Sup-
plementary Table 18).

Species richness changes and the evolution of obligate symbiosis. 
To further examine if the evolution of obligate symbiosis is associated 
with increased species richness, we restricted our sister comparison 
dataset to cases where sister families differed in the percentage of 
species with obligate symbionts. Differences in species richness was 
calculated as the log2 of the ratio of species richness between sister taxa 
and analysed as a Gaussian response variable using a BPMM. The dif-
ference in the percentage of species with obligate symbionts between 
sister taxa and pair age were fitted as fixed effects. Node identity of 
sister comparisons, linked to the phylogeny, was included as a random 
effect (Supplementary Table 19).

Sensitivity analyses. We tested the robustness of our conclusions 
to several underlying data assumptions. These sensitivity analyses 
provided quantitatively similar results to our main analysis (Supple-
mentary Tables 21–27).

Removing families added to the Rainford tree. There were 23 families 
within our obligate symbiont dataset that were not represented in the 
Rainford phylogeny that were added to the phylogeny (‘Insect and 
symbiont phylogenies’ in Methods). To examine the robustness of our 
results to including these families, we re-ran the analyses detailed in 
‘Phylogenetic correlations between obligate symbiosis and nutrients’ 
in Methods (Supplementary Table 21) with the 23 families excluded.

Including only bacterial symbionts. Bacteria made up the vast major-
ity of obligate symbionts (79 out of 84 insect families had bacterial 
symbionts, 94%). To verify that our results were not explained by a 
few outlying eukaryotic symbionts, we re-ran the analyses detailed in 
‘Phylogenetic correlations between obligate symbiosis and nutrients’ 
in Methods including only insect families with bacterial symbionts 
(nfamilies = 395; Supplementary Table 22).

Removing co-occurring obligate symbionts. There were 112 unique 
host–bacterial symbiont combinations. Of these 49% (n = 55) had mul-
tiple co-occuring symbionts. It is possible that any signature of bac-
teria specializing in B5 and B9 vitamin production is obscured by the 
presence of co-residing obligate symbionts that may change nutrient 
provisioning roles. We therefore repeated the analyses in ‘Host sym-
biont interactions and levels of B vitamins in insect diets’ in Methods 
section after removing hosts that had multiple co-occurring symbionts 
(Supplementary Table 23).

Excluding data from microscope studies. Out of the 402 insect fami-
lies included in our analyses, 260 were inferred to lack obligate sym-
bionts from microscopy by Buchner and colleagues that showed an 

absence of specialized symbiont organs. Insects in the orders Ephemer-
optera, Plecoptera, Odontata, Neuroptera, Orthoptera and Lepidop-
tera, superfamily Tenthredinoidea and subclade Aculeata (excluding 
Formicidae) all lacked bacteriocytes and in general do not depend on 
endosymbionts for survival23. We tested the sensitivity of our results 
to including this inferred data by re-running analyses outlined in 4.2.1, 
4.2.3 and 4.5.2 on data where obligate symbiosis had only been directly 
studied (for more details, see ‘Criteria for assessing obligate symbiosis’ 
in Methods). This also tested the robustness of our results to removing 
Lepidoptera that contribute many tips to the phylogenetic tree, lack 
obligate symbionts and are predominately herbivorous.

Obligate symbiosis and types of amino acids. In 4.2.1 we analysed the 
sum of essential and non-essential amino acids. All amino acids were 
highly correlated (r > 0.8. Extended Data Fig. 3), but to further check if 
minor differences in the concentration of each amino acid influenced 
the relationship with obligate symbiosis we ran a second set of analyses. 
The phylogenetic correlation between obligate symbiosis and each 
amino acid was examined using a series of MR-BPMMs. The proportion 
of species with obligate symbionts in families and the concentration of 
each amino acid were response variables in each analysis (nine different 
bivariate models for essential amino acids and six different bivariate 
models of non-essential amino acids; Supplementary Table 29).

Removing families with and without obligate symbionts. Out of 
the 402 insect families, 15 families contained species with and without 
obligate symbionts (3.7%). For transition rate analyses, these mixed 
families had to be classified as having obligate symbionts or not. We 
tested the sensitivity of our results to this classification by removing 
these families and re-running the analyses described in ‘Transition rates 
between obligate symbiosis and B vitamins’ in Methods.

The conclusions from the sensitivity analyses were quantitatively 
similar to our main analyses (Supplementary Tables 21–29).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data are provided in Supplementary Tables 1–4. Full citations of 
references in supplementary tables are given in the method refer-
ences7,12,16,101–404. All supplementary tables are available at the Open 
Science Framework (osf.io project number TYK7C; https://doi.
org/10.17605/OSF.IO/TYK7C)405. Source data are provided with  
this paper.

Code availability
R code, BayesTraits code and analysis results are available at the 
Open Science Framework (osf.io project number TYK7C; https://doi. 
org/10.17605/OSF.IO/TYK7C)405.
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Extended Data Fig. 1 | The correspondence between the composition of adult 
and juvenile diets across insect families. The relationship between adult and 
juvenile dietary concentrations of (A) Carbohydrate, (B) Fat, (C) Protein, (D) 
Essential Amino Acids (EssAA), (E) Non-Essential Amino Acids (NonEssAA), (F) 

Vitamin A, (G) Vitamin B and (H) vitamin E are presented. Each point is one insect 
family and the lines are linear regressions with 95% confidence intervals (shaded 
bands). Pearson correlation coefficients (‘Correlation’) are presented for each 
nutrient.
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Extended Data Fig. 2 | The relationship between different B vitamins across 
diets. The frequency distributions of the different B vitamins are plotted in the 
diagonal panels. Scatter plots of the correlation between different B vitamins 
are plotted in the panels below the diagonal, where each point represents one 

insect family and lines represent linear regressions with 95% confidence intervals 
(shaded bands). Pearson correlation coefficients are given in the panels above 
the diagonal.
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Extended Data Fig. 3 | The relationship between different amino acids across 
diets. The frequency distributions of the different amino acids are plotted in the 
diagonal panels. Scatter plots of the correlation between different amino acids 

are plotted in the panels below the diagonal, where each point represents one 
insect family and lines represent linear regressions with 95% confidence intervals 
(shaded bands). Pearson correlation coefficients are plotted above the diagonal.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Reconstruction of ancestral levels of B vitamins, 
obligate symbiosis and feeding niches across 402 insect families. Ancestral 
concentrations of (A) B5 and (B) B9 vitamins were estimated using BPMMs 
and are shown by the size of circles at each node. Turquoise tips and branches 
indicate obligate symbionts and different coloured dots represent different 
feeding niches. Ancestral feeding niches were estimated using SCM and states 

of obligate symbiosis were estimated using a BPMM (Supplementary Table 5). 
There was greater correspondence between predictions from BPMMs and raw 
concentrations of (C) B5 and (D) B9 vitamins than there was for predictions 
from phylogenetic ridge regressions (PRR, E-F), which allowed for rate shifts in B 
vitamins across the phylogeny (E-F). In C-F lines represent linear regressions with 
95% confidence intervals (shaded bands).
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Extended Data Fig. 5 | Levels of B vitamins in host diets in relation to symbiont phylogenetic history. B5 vitamins are presented in blue and B9 vitamins are in black 
with the size of the circles indicating the amount of B5 and B9 vitamins in the diets of insect hosts.
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Extended Data Fig. 6 | Sister comparisons of families with and without 
obligate symbionts. Obligate symbiosis was associated with increased species 
richness in all comparisons apart from one, where there has been a switch to 
blood feeding from predation. Species richness was measured as the number 
of species within families and is presented on the natural logarithmic scale. 

There were 13 sister families with different percentages of species with obligate 
symbionts. Of these, 5 comparisons had small differences in rates of obligate 
symbiosis: <35% difference in percentage of species with obligate symbionts (not 
plotted, see Fig. 4 for all 13 comparisons).
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Extended Data Fig. 7 | The evolution of obligate symbioses in relation to 
nutrient deficiencies after removing families that were added to the Rainford 
tree. The proportion of species with obligate symbionts in families is plotted in 
relation to dietary concentrations of (A) Carbohydrate, (B) Protein, (C) Fat (D) 
Essential Amino Acids, (E) Vitamin B5 and (F) vitamin B9. Obligate symbioses was 
negatively phylogenetically correlated to concentrations of B vitamins (B phylo 

r (CI) = −0.36 (−0.53, −0.11), pMCMC = 0.008. Supplementary Table 21). Values 
of macro- and micro-nutrients are standardized amounts per gram (‘Nutrient 
data’ in Methods). The size of points represents the mean number of host species 
(log transformed) examined for obligate symbionts per family. Lines represent 
logistic regressions with 95% confidence intervals (shaded bands) plotted for 
illustrative purposes.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02058-0

Extended Data Fig. 8 | The evolution of obligate symbioses in relation to 
nutrient deficiencies including only bacterial symbionts. The proportion 
of species with obligate symbionts in families is plotted in relation to dietary 
concentrations of (A) Carbohydrate, (B) Protein, (C) Fat (D) Essential Amino 
Acids, (E) Vitamin B5 and (F) vitamin B9. Obligate symbioses was negatively 
phylogenetically correlated to concentrations of B vitamins (B phylo r 

(CI) = −0.35 (−0.49, −0.06), pMCMC = 0.008. Supplementary Table 22). Values 
of macro- and micro-nutrients are standardized amounts per gram (‘Nutrient 
data’ in Methods). The size of points represents the mean number of host species 
(log transformed) examined for obligate symbionts per family. Lines represent 
logistic regressions with 95% confidence intervals (shaded bands) plotted for 
illustrative purposes.
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Extended Data Fig. 9 | The evolution of obligate symbioses in relation to 
nutrient deficiencies after restricting data to families where obligate 
symbioses had been directly studied. The proportion of species with obligate 
symbionts in families is plotted in relation to dietary concentrations of (A) 
Carbohydrate, (B) Protein, (C) Fat (D) Essential Amino Acids, (E) Vitamin B5 and 
(F) vitamin B9. Obligate symbioses was negatively phylogenetically correlated to 

concentrations of B vitamins (B phylo r (CI) = −0.58 (−0.79, −0.04), pMCMC =  
0.05. Supplementary Table 25). Values of macro- and micro-nutrients are 
standardized amounts per gram (‘Nutrient data’ in Methods). The size of points 
represents the mean number of host species (log transformed) examined for 
obligate symbionts per family. Lines represent logistic regressions with 95% 
confidence intervals (shaded bands) plotted for illustrative purposes.
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