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Obligatelymulticellular organisms,where cells can only reproduce as part of the
group, have evolvedmultiple times across the tree of life. Obligatemulticellular-
ity has only evolved when clonal groups form by cell division, rather than by
cells aggregating, as clonality prevents internal conflict. Yet obligately multicel-
lular organisms still vary greatly in ‘multicellular complexity’ (the number of
cells and cell types): some comprise a few cells and cell types, while others
have billions of cells and thousands of types. Here, we test whether variation
in multicellular complexity is explained by two conflict-suppressing mechan-
isms, namely a single-cell bottleneck at the start of development, and a strict
separationofgermlineand somatic cells. Examining the life cycles of129 lineages
of plants, animals, fungi and algae, we show using phylogenetic comparative
analyses that an early segregation of the germline stem-cell lineage is key to
the evolution of more cell types, driven by a strong correlation in the Metazoa.
By contrast, the presence of a strict single-cell bottleneck was not related to
either the number of cells or the number of cell types, but was associated with
early germline segregation. Our results suggest that segregating the germline
earlier in development enabled greater evolutionary innovation, although
whether this is a consequence of conflict reduction or other non-conflict effects,
such as developmental flexibility, is unclear.
1. Introduction
Multicellular organisms vary greatly in multicellular complexity: some are rela-
tively simple, containing fewer than a dozen cells with no discernible cell types,
whereas others contain billions of cells and thousands of cell types [1]. The com-
plete suppression of conflict among cells within an organism is predicted to be
required for multicellular complexity to evolve [2–4]. However, the widespread
variation in the size and complexity of multicellular organisms suggests that
internal conflicts have been resolved to varying degrees in different lineages [5].

Conflict within a multicellular organism occurs when the inclusive fitness
interests of the constituent cells are misaligned [6]—the cells are not all working
towards the same goal. The mode of group formation demonstrates how such
conflict can limit complexity. Obligate multicellularity, where cells can no
longer survive and reproduce independently, has been key to the evolutionary
diversification of numerous lineages across the tree of life, and has only evolved
in groups that form by cell division [7]. Forming a multicellular group through
cell division—where cells ‘stay together’—eliminates selection within a group
by ensuring all cells are clonally related [8,9]. A gene that decreases the repro-
duction of an individual cell while increasing the total reproduction of the
group will be favoured, as the interests of all cells are aligned in maximizing
group fitness [9–11]. This enables altruistic traits like sterility to evolve, and ulti-
mately complex adaptations such as eyes, wings or scales [4,12]. By contrast,
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multicellular groups that form by the aggregation of free-
living cells may temporarily benefit from aggregation—
through increased size [13] or genetic diversity [14,15]—but
they cannot reliably eliminate conflict, as clonality is not
guaranteed. As such, aggregative organisms have only ever
evolved facultative multicellularity, and are much more
limited in their complexity [7].

There remains, however, great variation in complexity
among obligately multicellular groups that is not explained
by the mode of group formation [7]. While significant vari-
ation in complexity will be due to direct selection on size
and complexity, this could also suggest that variation in the
levels of internal conflict could limit complexity. While
clonal development creates groups without internal genetic
variation, this is only ever temporary. Errors in DNA replica-
tion inevitably occur during cell division, which generates the
material for within-group selection that can produce selfish-
cell lineages to the detriment of the group. Cancer is perhaps
the most salient example of this: mutations enable rapid cell
division that is favoured by within-organism selection,
despite their harm to the organism [16].

Multicellular organisms have therefore evolved conflict
resolution mechanisms that align inclusive fitness interests by
shiftingselection fromactingwithin, to actingamong,multicellu-
lar groups. Variation in such mechanisms could generate
variation in the levels of internal conflict and therefore the poten-
tial complexity that an organism can achieve. Two common
mechanisms of conflict suppression in multicellular organisms
are single-cell bottlenecks [2,7,17] and a strict separation of germ-
line and somatic cell lineages [18–20]. A single-cell bottleneck
suppresses conflict by resetting clonality and segregating
mutations among offspring [21,22]. Were a selfish mutant to
arise within an organism, it could spread by parasitizing the
cooperation of other cells in order to become overrepresented
in the reproductive propagules. In the next generation, however,
the multicellular group would contain only mutant selfish cells.
With no cooperative cells to parasitize, such groups would per-
form poorly relative to groups composed only of cooperators
[21,23,24]. Consequently, selfishmutants are exposed to selection
and will be selected against at the organism level. Conversely, a
beneficial mutation will also be exposed to selection and can
more easily spread—it toowill be present in all cells in the follow-
ing generation [21,22]. Development from a single cell may also
provide greater developmental flexibility and potential for evol-
utionary innovation than one limited by a complex bodyplan
already in place [24,25].

A strict separation between germline and soma can also
suppress conflict by limiting the evolutionary potential of
mutations [19,20,26,27]. Many multicellular organisms
demarcate a small subset of cells early in development as
the germline that will eventually produce the gametes,
which we refer to as early germline segregation. Caenorhabdi-
tis elegans, for example, sets aside its germline after only four
cell divisions [28]. If these cells are removed, the nematode
develops normally but lacks gametes [28]. By segregating
the ‘mortal’ soma from the ‘immortal’ germline, any
mutations that arise within the growing soma are removed
as the soma perishes with each organismal generation. The
window for mutants to arise and access the germline is there-
fore limited by the duration before germline segregation: the
earlier germline segregation occurs, the shorter the potential
period of conflict. The alternative, germ cell differentiation
late in development, allows somatic mutations to enter the
germline and could create potential conflict over producing
germline versus soma. A selfish mutant might preferentially
contribute to the immortal germline rather than the mortal
soma [19,29], as observed in the selfish lineages of colonial
ascidians that produce only germ cells without contributing
to the soma after fusing with other colonies [30,31] . By limit-
ing the window for mutations to occur in the germline, early
germline segregation acts to limit the per generation mutation
rate—later somatic mutations cannot enter the germline, and
the inactive germline progenitor stem cells are protected from
replication errors. Species that lack early germline segregation
and instead differentiate germline cells throughout adult-
hood, such as plants, have a correspondingly higher per
generation mutation rate [32], although some groups
appear to have mechanisms that prevent this [33].

Humans use both mechanisms during development: we
start from a single zygotic cell and mark a small subset of
cells as the germline stem cells long before reproductive matur-
ity. Many model organisms do similarly. But this is not
representative of multicellular organisms, nor is it particularly
representative of the Metazoa [34]. Many organisms do not
have a single-celled bottleneck that separates each generation,
or early segregation of the germline and soma. Instead, they
often reproduce with multi-celled propagules (through bud-
ding or fission) and have totipotent stem cells that contribute
to both the germline and soma as adults. Hydra, for example,
often reproduces by budding—forming a miniature individual
that is released fully-formed—and has widely distributed adult
stem cells that contribute to both the germline and the soma
[35]. Therefore, in Hydra, reproductive propagules can be
genetically heterogeneous, increasing the potential for conflict,
although occasional sexual reproduction re-establishes clonality
[36]. Similar examples can be found in many animal lineages,
from the early-branching phyla like the Cnidaria and the Pori-
fera, to our closer relatives in the Chordata [30,34], as well as in
many plants, fungi and algae [37]. Strict, single-cell bottlenecks
every generation and the early segregation of germlines, how-
ever, have evolved independently multiple times—notably in
the Metazoa with the Craniata, Ecdysozoa and Mollusca [34].
All multicellular organisms, therefore, can be considered to
fall on a continuum of potential conflict depending on the
relative frequency of single-celled bottlenecks and at what
stage the germline is specified [18].

Despite the proposed importance of regular bottlenecks and
early germline segregation for explaining variation inmulticellu-
lar complexity, empirical tests are lacking. Here, we use a
phylogenetic comparative approach to test whethermulticellular
complexity is explained by the presence of a strict single-celled
bottleneck, and the presence and timing of a germ–soma
divide. To quantify multicellular complexity, we collated data
from the literature on the number of cells and the number of
cell types.We combined thiswith life cycle accounts to determine
the presence or absence of a strict single-cell bottleneck and the
timing of germline segregation across all major obligately multi-
cellular lineages. In total, data were obtained for 138 species
spanning the Bacteria, Chromista, Plantae, Fungi and Animalia.
2. Methods
(a) Data collection
Data previously collected by Fisher et al. formed the basis for the
current analysis [7]. They included published data on cell
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numbers and the number of cell types (e.g. [5,38,39]). While
Fisher et al. [7] considered obligately and facultatively multicellular
organisms, we only considered obligately multicellular organisms.
We expanded this dataset to include information on the ability of
organisms to reproduce without single-cell bottlenecks, and the
presence and timing of germline sequestration. For each entry in
the original dataset, we conducted a search on Web of Science
for terms related to different modes of reproduction: ‘(ALL= (repro-
duct* OR sex* OR asex* OR vegetat* OR fissi* OR clonal* OR
regenerat* OR rhizo* OR germ-line* OR germline* OR germ line* OR
bud* OR fragment* OR parthenogen* OR stolon*)) AND (ALL =
TAXON)’. We selected relevant literature by screening titles and
then the abstract. Additional literature was located by examining
citations within relevant papers and using reviews, specifically
[40] for animals, [39,41,42] for algae and [38] for cyanobacteria.

We defined organisms as having a strict single-cell bottleneck
between generations when there were no examples of fissiparous
or budding reproduction in the literature, including when repro-
duction was triggered by fragmentation of the organism. This
means that those organisms which have not been subject to in-
depth study, or that rarely reproduce by fragmentation, may be
more likely to be erroneously categorized, which could reduce
our ability to determine the evolutionary consequences of
fissiparous reproduction. Similarly, some species contain popu-
lations or subspecies that are exclusively sexual while others
are exclusively asexual, although the planarian flatworm Schmid-
tea mediterranea was the only example in our dataset [43]. In this
case, we denoted the organism as not having a strict bottleneck
and repeated our analyses with this datapoint reversed. For
some groups, such as red algae, there are sexual, asexual and
budding/fissiparous life cycles that exist in parallel [42,44]. We
classified these as lacking a strict bottleneck given that the fissi-
parous life cycle can continue indefinitely. By contrast, if the
sexual and fissiparous stages strictly alternate as part of the life
cycle (e.g. in parasites such as schistosomes [45]), we considered
this as including a strict bottleneck, although there were no
examples of such life cycles in our dataset.

For the timing of germline segregation, we considered two
possible conditions: (i) Early germline segregation. We considered
germline segregation to be ‘early’ if it is segregated before repro-
duction, and stem cells present in the adult organism contribute
to either the soma or the germline, but not both. In well-documen-
ted cases, early germline segregation is demonstrated by removing
germline progenitors resulting in an inability to regenerate, as in
mice or C. elegans [28]. However, such experiments have been con-
ducted in only a few model organisms. (ii) Late germline
differentiation. Organisms were considered to have ‘late’ germline
differentiation if adult stem cells contribute to both the germline
and the soma. This is often demonstrated as the regeneration of
the germline if it is removed in adults, or the generation of a
new germline in a fragment of an individual that did not contain
the gametes. As we are only interested in the timing of germline
specification, we excluded organisms that do not have a soma–
germline separation, and were agnostic to the mechanism that
determines the germline stem-cell progenitors [46]. Germline
data for the Volvocine algae were from [39], and for metazoans
were from [34,46,47]. All references are available with the data
uploaded at github (https://github.com/jackhowe-bio/complex-
ity_project).

We collected all data at a species level where possible, but if
this was lacking we used information for congeners. If there were
no data available for the genus, the species was removed from
that analysis. Measured traits were generally very similar for con-
geners, although exceptions do occur, for example, flatworms in
the genus Schmidtea have both sexual and fissiparous reproduc-
tion [43,48]. We therefore ran sensitivity analyses checking the
consistency of results when taxa with inferred data from
congeners were removed (see Statistical analyses (§2c)).
(b) Phylogeny
A phylogeny of the species in our dataset was generated using
the ‘R Tree of Life Project’ (rtol) [49]. Tree branch lengths were
generated as described by Grafen & Hamilton [50] and branches
shorter than 10−25 were removed, creating multichotomies.
Multichotomies in the tree were randomly resolved.
(c) Statistical analyses
Bayesian phylogenetic mixed models (BPMMs) implemented in
MCMCglmm [51] in R 4.2.0 [52] were used to conduct five sets
of analyses to estimate the following. (i) The effect of a strict
single-celled bottleneck separating each generation (two-level
fixed factor) on cell number (Poisson error distribution). (ii)
The effect of a strict single-celled bottleneck separating each
generation (two-level fixed factor) and the number of cells (log-
transformed continuous fixed effect) on the number of cell
types (Poisson error distribution). The number of cells was
included as a fixed effect as it is known to correlate with the
number of cell types [7]. (iii) The effect of germline segregation
timing (two-level fixed factor) on cell numbers. (iv) The effect
of germline segregation timing (two-level fixed factor) and cell
number (log-transformed continuous fixed effect) on the
number of cell types. (v) The phylogenetic correlation between
the presence of a strict single-celled bottleneck (binomial error
distribution) and early germline sequestration (binomial error
distribution) using multi-response BPMMs. In all models, the
evolutionary relationships between organisms were modelled
by fitting a phylogenetic variance–covariance matrix, con-
structed from the phylogeny as a random effect. The
phylogenetic signal in Gaussian and Poisson response variables
was calculated as the phylogenetic variance divided by the
total random effect variance (‘Phylogenetic heritability’ in the
terminology of MCMCglmm [51]). For binary traits, the residual
variance is not identifiable and was fixed to 1. Phylogenetic
signal for binary response variables was therefore calculated
using the intraclass correlation coefficient defined as: phylogenetic
variance/(phylogenetic variance + 1) + π2/3 [51,53].

For models with Poisson error distributions, weakly informa-
tive inverse-gamma priors were used for the random phylogenetic
effects (V = diag(n), ν = n− 1 + 0.002, where n is equivalent to the
number of response traits). For models with binary error
distributions, parameter-expanded priors were used (V = diag(n),
ν = n− 1, αμ= rep(0, n), αV = 1000) that have a lower pull
toward zero. For fixed effects, non-informative uniform priors
were used (MCMCglmm defaults). We tested the sensitivity of
our results to prior specification by reconducting all analyses vary-
ing the value of the shape parameter (ν = 1 and ν = 2). (See
the electronic supplementary material for descriptions of all
models and priors.) In addition, we tested the sensitivity of our
results to inferring data from congeners by re-running analyses
with the datapoints inferred from congeners removed. We also
tested whether our results were specific to the Metazoa by re-
running analyses without the Metazoa, and only using data on
Metazoa. All models, and their results, are reported in the
electronic supplementary material, information.

We optimized model settings by running the first analysis
with varying number of iterations (5 × 105–107), burn-in lengths
(104–106), and thinning factors (100 and 1000), and chose the
combination of parameters that minimized the autocorrelation
of successive sampled means and variances (8 × 106 iterations,
106 burn-in iterations and thinning factor of 1000 for all models
apart from 1.6 × 107 iterations when testing for a phylogenetic
correlation between a strict bottleneck and early germline segre-
gation). Visual inspection of traces and the Gelman–Rubin
convergence diagnostic [54] confirmed that chains converged
for all models (potential scale reduction factor less than 1.05 in
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all cases). Differences between parameters (e.g. the presence and
absence of single-celled bottlenecks; correlations tested against 0)
were deemed significant when 95% credible intervals (CI) did
not overlap with 0 and the reported pMCMC value was less
than 0.05.

Ancestral states were estimated for germline timing (bino-
mial error distribution) and the presence of strict single-celled
bottlenecks (binomial error distribution) using intercept-only
BPMMs. Ancestral states for the number of cell types adjusted
for number of cells were estimated using a BPMM of cell-type
number with number of cells fitted as a fixed effect. Traits and
reconstructions were plotted across the phylogeny using ggtree
[55], and figures were produced using ggplot2 [56]. All code
and data are available at Github (https://github.com/jac-
khowe-bio/complexity_project) as well as in Dryad [57].
roc.R.Soc.B
291:20232466
3. Results
The absence of a strict single-cell bottleneck separating each
generation is common throughout multicellular organisms. It
predominates in the Streptophyta (plants), the Rhodophyta
(red algae) and the Phaeophyta (brown algae), and is
common in the early-branching lineages of Metazoa. The
Chlorophytes, sister species to the Streptophytes within the
Viridiplantae, represent an exception in our dataset, where
there all species included use a strict bottleneck. While it is
possible that Chlorophytes differ substantially in their biology
compared with other green algae, this pattern likely arises
from an overrepresentation of Volvocales species in the litera-
ture, as they are a model system for studying the evolution of
multicellularity. In our dataset, ancestral state reconstructions
indicated that there was a lack of a strict generational bottle-
neck at the root of the tree. However, as the major branches
in the dataset evolved multicellularity independently, it is
more relevant that the Metazoa, Fungi and Plantae were all
predicted to have evolved from an ancestor without a strict
single-celled bottleneck. Conversely, the Volvocales, Rhodo-
phyta and Ocrophyta were predicted to have evolved from
an ancestor with a strict bottleneck. We find multiple tran-
sitions between single-cell bottlenecks and fissiparous
reproduction, but the exact number of predicted gains and
losses are heavily dependent on the phylogenetic sampling
of organisms, and the sparse and biased data available, so
the number and timing of transitions here are unreliable.

The timing of germline specification was less evolutiona-
rily labile than the presence of single-celled bottlenecks. Late
germline differentiation was most typical, and is observed
in all Plantae, Rhodophyta, Ocrophyta and Fungi and in
the early-branching Metazoa. Early germline segregation
during development was observed in only five groups
represented in our dataset: one in the volvocine algae, and
four in the Metazoa (Craniata, Ecdysozoa, Mollusca and
Annelida). Ancestral state reconstruction estimated this to
be a single gain of early germline segregation in the Metazoa,
with two subsequent losses and a single gain of early
germline segregation in the volvocine algae (figure 1).

The evolution of an early-segregating germline was sig-
nificantly correlated with an increase in the number of cell
types, after controlling for the number of cells (figures 1
and 2) (early versus late germline, 95% CI =−0.84 to −0.11,
pMCMC= 0.012, electronic supplementary material, table
S110). Given our analyses included cell number, we further
investigated whether early germline segregation influenced
the number of cell types per se or the relative number of cell
types for a given cell number. While organisms with late
germline segregation have generally more cells, the timing
of germline segregation was not significantly related to
cell number in our phylogenetically controlled analysis
(figure 2a, 95% CI =−4.81 to 4.45, pMCMC= 0.933, electronic
supplementary material, table S14). As a result, the number of
cell types remained positively associated with early germline
segregation when cell number was removed from the analysis,
although the relationship was much weaker (pMCMC=
0.075–0.127 depending on the priors, electronic supplementary
material, tables S115–S120).

The association between germline timing and number of
cell types after controlling for cell number was largely
driven by Metazoa: the relationship disappeared when data
from Metazoa were excluded (95% CI =−0.66 to 1.1,
pMCMC= 0.669, electronic supplementary material, table
S170), but remained significant when only data fromMetazoa
were included (95% CI =−1.03 to −0.13, pMCMC= 0.018,
electronic supplementary material, table S140). Furthermore,
similar to the overall dataset there was no significant associ-
ation between early germline segregation and number of cells
in the Metazoa (95% CI =−8.74 to 8.8, pMCMC= 0.926,
electronic supplementary material, table S134).

There was no significant relationship between the presence
of a strict single-cell bottleneck between generations and either
the number of cells (95% CI =−0.83 to 3.68, pMCMC= 0.197,
electronic supplementary material, table S92) or cell types
(figure 3, 95% CI =−0.13 to 0.23, pMCMC= 0.573, electronic
supplementary material, tables S91 to S102). Strict single-
celled bottlenecks were nevertheless positively phylogeneti-
cally correlated with early germline segregation (figure 4;
electronic supplementary material, data). This suggests that
single-celled bottlenecks might not influence multicellularity
complexity directly, but rather could be important in generat-
ing an early germline, which in turn suppresses conflict
enough to allow differentiated cell types evolve.

All results remained consistent across different priors and
when data for species with missing data were inferred from
congeners (electronic supplementary material, tables S1–S30).
4. Discussion
The evolution of obligate multicellularity depends on the
low-conflict conditions that clonal development creates
[2–4]. Mutation, however, inevitably erodes clonality and pro-
vides the material for within-organism selection to favour
non-cooperative cells. Low-conflict conditions are re-estab-
lished by regular single-cell bottlenecks and a strict
segregation of the germ and soma, shifting selection to
among multicellular groups, rather than among their cells.
Yet many multicellular organisms use neither, and might
therefore be expected to suffer from internal conflict [18].
Using a dataset spanning multiple origins of obligate multi-
cellularity [7], we tested whether the evolution of strict
single-celled bottlenecks and strict germlines facilitated
greater cooperation and thereby multicellular complexity—
measured as the number of cells and cell types. Organisms
with early-segregating germlines contained more cell types,
but not more cells, than organisms with a late-segregating
germline or organisms lacking a clear germline (figures 1
and 2). Organisms with strict bottlenecks contained no
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more cells or cell types than organisms that reproduce
through fission (figure 3). Early germline segregation and
the use of a strict single-celled bottleneck each generation
were also significantly correlated (figure 4). These results
suggest that developmental innovation may be as important
as conflict limitation in the evolution of multicellular
complexity.

Our ability to conduct phylogenetic analyses of patterns
in development is currently limited by the amount and qual-
ity of available data. This is partly the result of the challenges
involved in measuring relevant variables. Estimates of cell
number and cell-type number used here were based on mor-
phological observations by multiple authors [5,7]. While such
estimates are often dependent on several assumptions, they
capture the broad patterns of size and complexity across mul-
ticellular life and are comparable across species, providing
valuable insights into evolutionary patterns [7,58].

Organisms with and without strict bottlenecks every gen-
eration have similar cell numbers and cell types (figure 4). It
appears, therefore, that the potential internal conflict in
organisms capable of fission is sufficiently suppressed to
have not limited the evolution of multicellular complexity.
An occasional bottleneck may be sufficient to suppress con-
flict in taxa that are mainly fissiparous, and therefore need
not occur every generation in order to maintain cellular
cooperation. Indeed, simple models have suggested that
only infrequent bottlenecks are required to prevent cell selfish
lineages from persisting in a population [59]. Few data exist
on the relative frequency of bottlenecks, however, so this
cannot currently be tested. Groups that are obligately fissipar-
ous may provide some insight, but these are rare, typically
derived states that have not produced large radiations, and
often considered to be evolutionary dead-ends owing to
their lack of sexual recombination [60]. A single-cell bottle-
neck often occurs in tandem with sexual reproduction,
although single-cell propagules can be asexually produced
spores or similar. The benefits of sexual reproduction [61]—
for example, recombination enabling the accumulation of
beneficial and removal of deleterious mutations [62], while
preventing the spread of selfish genetic elements [63]—are
distinct from the benefits we discuss here, but may provide
an additional selection pressure that favours a bottleneck
where sex results in the formation of a single zygotic cell.

Bottlenecks could also occur through means not captured
here. Cryptic bottlenecks, where a single cell initiates a multicel-
lular propagule prior to release from the mother group, also
suppress conflict. For example, in many volvocine algae, a
single cell divides to form a daughter colonywhile still physically
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within the parental alga, before being released in a process ana-
logous to live-bearing animals [64,65]. In these cases, the next
generation still starts from a single cell, but this is not clear in
many other organisms, such as plants that spread vegetatively.
Structural organization can also create bottlenecks. Many organ-
isms with non-deterministic growth, such as plants and fungi,
are modular in that they comprise semi-independent, repeating
parts. The branches of a plant start from a single, or very small
group of meristematic stem cells [66,67], while branching
fungal hyphae spread radially. Both growth patterns would seg-
regate genetic variation, shifting selection to act among modules
rather than within them (e.g. [33]).

Fusion among modular organisms—observed in red
algae [68], fungi [69], sponges [70] and colonial ascidians
[29,30]—bypasses the single-cell bottleneck and provides
another source of genetic variation. This variation enables
the evolution of parasitic genotypes, which have been
observed in colonial ascidians [31] and fungi [69,71]. Fusion
is therefore limited to between close relatives by polymorphic
allorecognition loci, and it is not clear how often between-,
rather than within-, clone fusion occurs outside of the labora-
tory [69]. The data are not currently available to test whether
the conflict created by fusion limits complexity in these
organisms, as in aggregative multicellularity [7].
Early germline segregation prevents mutations from per-
sisting beyond a single generation by excluding any somatic
mutations from the germline once it has been segregated,
thereby removing the evolutionary benefits for potential
somatic cheats [20]. The observation that organisms with an
early-segregating germline generally have more cell types—
driven by the correlation in Metazoa—is consistent with
conflict suppression enabling the evolution of greater
cooperation. A potential alternative non-conflict-reducing
benefit to early germline segregation would be if maintaining
a cell’s pluripotency limits its developmental potential, which
early segregation may guard against. Consistent with this idea,
the mechanism of germline specification has previously been
linked to species radiation rates in the Amphibia: maternal
specification (preformation) of the germline is associated
with higher speciation rates than those that rely on cell–cell
communication (induction) [72] (although see [73]). This
effect is not seen, however, in molecular rates of evolution of
developmental gene networks [74]. While preformation of
the germline tends to occur earlier than induction, both still
occur early in development, so the effect of timing of germline
specification is untested. Under a conflict scenario, one might
expect groups with late germline differentiation to suffer
from a greater mutational load, as somatic mutations enter
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the germline (e.g. [32]), whereas in a release of constraints
scenario, there may be a slower rate of evolution in early
developmental genes.

Clearly, something special has occurred during the evol-
ution of the Metazoa. They have reached a maximum of
many more cell types for their size than observed in other
groups, and they are the only group that shows a significant
correlation between germline timing and the number of cell
types. The only other transition to early germline specifica-
tion is observed in the volvocine algae, and a concomitant
increase in complexity has not followed. Without other
groups exhibiting transitions to early germline specification,
we cannot rule out the possibility that another, uniquely
animal trait besides early germline specification confounds
our analysis, but this does not preclude the potential impor-
tance of early germline specification in the increase in
complexity in the Metazoa. While there are insufficient tran-
sitions in germline states to conduct a formal analysis,
ancestral state reconstructions support that early germline
specification facilitated the evolution of greater levels of cellu-
lar complexity: early germline specification preceded the
increases in cellular complexity in each case. The common
ancestor of the Metazoa was also estimated to have had late
germline differentiation and the ability to reproduce through
fission—in agreement with previous analyses [34]—and we
identified only a single transition to early germline specifica-
tion in the animals, with three subsequent losses. This is
likely an artefact of the animal species for which we have
complexity data as other studies with wider metazoan
sampling suggest early germline specification has evolved
independently in different groups [46,75].

The effect of germline specification timing and strict single-
cell bottlenecks on the number of cell types could also be
explained by the limitations of modular versus unitary,
deterministic body plans. Germline segregation in adult organ-
isms through broadly distributed pluripotent cells is common
in modular organisms, necessarily so: there must be a totipo-
tent stem cell in each module that produces the somatic cells
and eventually the germline. The wide distribution of totipo-
tent cells enables reproduction through budding and fission,
as all missing tissues and cell types can be replaced. The posi-
tive correlation between the presence of a strict single-cell
bottleneck between generations and early germline specifica-
tion supports this (figure 4). Such modular organisms can
reach great sizes by the repetition of similar subunits, which
increases cell number without a concomitant increase in the
number of cell types. Indeed, organisms with a late-segregat-
ing germline and those capable of bypassing a single-celled
bottleneck tend to comprise more cells than those with an
early-segregating germline and a strict single-celled bottleneck,
albeit non-significantly so once phylogeny is accounted for.
Within the Metazoa, there was no association between germ-
line timing and cell number, suggesting that the observed
increase in cell-type number is driven predominantly by
greater cell-type diversification in animal lineages with early
germline specification, rather than a decrease in the number
of cells (figures 2 and 3).
5. Conclusion
We found no evidence that the evolution of an obligate
single-cell bottleneck separating each generation has enabled
greater complexity. Organisms where each generation is sep-
arated by a single-cell bottleneck, do not contain more cells or
cell types, but do have germlines that segregated earlier in
development. However, in a pattern driven by the Metazoa,
we observed that organisms with an early-segregating
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germline possessed a greater diversity of cell types, albeit
potentially fewer cells. An increase in cell types associated
with early germline segregation suggests that it may have
been an important innovation in the evolution of the Meta-
zoa, but whether this complexity is driven by conflict
suppression, greater developmental flexibility or both is
difficult to separate.
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