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Abstract

Phylogenetic comparative methods are important tools in biology, provid-
ing insights into the way traits evolve. There are many technical resources
describing how these methods work. Our aim here is to complement these
with an overview of the types of biological questions that can be addressed by
different methods and to outline potential pitfalls and considerations when
embarking on comparative studies. First, we introduce what comparative
methods are and why they are important. Second, we outline how they can
be used to understand when, where, and how frequently traits evolve. Third,
we examine how the coevolution of traits within and between species can be
studied, along with patterns of causality. Finally, we discuss how to approach
comparative analyses and the ways in which different types of data, such as
published relationships, omic, and remote sensing data, can be integrated.
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1. INTRODUCTION

Phylogenetic comparative analyses have enabled inferences about the evolution of diverse bio-
logical phenomena from the colonization of land by plants to the prevalence of cancer (Alves
et al. 2019, Bowles et al. 2020, Harvey & Pagel 1991, Martins 1996, Nunn 2011). Over the last
30 years, there have been important developments in the techniques and the types of data available
for conducting phylogenetic comparative analyses (Garamszegi 2014, Harmon 2018, O’Meara
2012, Revell & Harmon 2022). These developments have expanded the scope of the questions
that can be addressed, and there are numerous excellent technical reviews and online tutorials
that provide more detailed how-to guides (Garamszegi 2014, Harmon 2018, Nunn 2011, Revell
& Harmon 2022). It can, however, be difficult to navigate why particular methods are used to
study specific questions and what the latest developments are. Our aim in this review is to provide
researchers with a guide to identifying the questions they can ask with phylogenetic comparative
methods and what to consider when setting off on such adventures.

Phylogenetic comparative methods can be used to study a range of biological processes in-
cluding the evolution of traits (Adams & Collyer 2019, Hernández et al. 2013, Martins 1996),
population dynamics (Germain et al. 2023), species diversification (Tobias et al. 2020), cospeci-
ation between different organisms, such as hosts and microbes (Dismukes et al. 2022, Hadfield
et al. 2014), biogeography (Ronquist & Sanmartín 2011, Sukumaran & Knowles 2018), and the
structure of communities (Basu et al. 2023, Mouquet et al. 2012,Webb et al. 2002). Each of these
areas requires an in-depth treatment, many of which have recently been covered. We focus on
trait evolution, where recent advances have expanded the questions that can be studied and where
further synthesis may help researchers take up such methods.

To help readers that might be new to the field, we first give a brief overview of the history of
phylogenetic comparative methods and why they were developed (Section 1). Second, we examine
the approaches available for understanding: (a) when in evolutionary time, where geographically,
and how frequently traits have evolved (Section 2); (b) the evolutionary relationships between traits
(Section 3); and (c) the way causality and the order of trait evolution can be estimated (Section 4).
Third, we provide a roadmap for how to approach comparative analyses (Section 5). Finally, we
discuss how comparative approaches can be used in conjunction with field studies and how they
can incorporate different types of molecular, physiological, behavioral, and environmental data
(Section 6).

2. A SHORT INTRODUCTION TO PHYLOGENETIC
COMPARATIVE METHODS

2.1. What Are Comparative Methods and Why Are They Useful?

Phylogenetic comparative analyses require two main ingredients: information about traits across
evolutionarily distinct units (usually species but sometimes others such as populations) and es-
timates of the ancestry between those biological units (a phylogeny). This basic setup enables
variation in traits across species to be investigated over timescales that are well beyond the grasp
of observational or experimental studies, providing unique insight into how evolution operates.
As a result, phylogenetic comparative methods have become an indispensable toolkit for answer-
ing questions in ecology and evolution (Garamszegi 2014, Harmon 2018, Harvey & Pagel 1991,
Martins 1996, Nunn 2011, Revell & Harmon 2022) (see Section 2.2).

There are many reasons why phylogenetic comparative analyses are useful, but two feature
most prominently (Frumhoff & Reeve 1994, Losos 2011). First, species cannot be assumed
to be independent data points (Figure 1a). When comparisons are made across species, re-
lationships between traits can arise spuriously because closely related species can have more
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2014

Phylogenetic omic-
to-phenotype models
(for an overview, see

Smith et al. 2020)

2013

Phylogenetic path
analysis

(von Hardenberg &
Gonzalez-Voyer 2013)

2010

Phylogenetic
generalized linear

mixed model (PGLMM)
with multiple

response variables
(Had�eld & Nakagawa 2010)

2006

Models of variable rates of trait
evolution across clades

(Bollback 2006)

1997

Models with
modes of evolution
(OU, ACDC) beyond

Brownian motion
(Martins & Hansen 1997)

1994

Transition rate models
(Pagel 1994)

1991

Phylogenetic linear
mixed model (PLMM)

(Lynch 1991)

1989

Phylogenetic generalized
least squares (PGLS)

(Grafen 1989)

19851970s

Phylogenetic
independent

contrasts (PICs)
(Felsenstein 1985)

a  b  Phylogenetic comparative methods timeline
Phylogenetic

nonindependence

Figure 1

The problem of phylogenetic nonindependence and some of the developments it stimulated. (a) Felsenstein’s (1985) stark presentation
of the problem of phylogenetic nonindependence. In this phylogeny, he illustrates the worst-case scenario for a phylogeny where
40 species represent a single independent comparison. (b) A powerful set of comparative methods have been developed since the
problem of phylogenetic nonindependence was realized in the 1970s, catalyzed by Felsenstein (1985). Abbreviations: ACDC,
accelerating–decelerating model; OU, Ornstein–Uhlenbeck model.

similar phenotypes; conversely, relationships can be hidden by large differences between clades
(Felsenstein 1985, Losos 2008) (Figure 1a). For example, a comparison of 566 trait relationships
across 65 studies showed that when species were treated as independent data points, stronger
relationships and lower p values were found compared to when phylogenetic relationships were
accounted for (Carvalho et al. 2006). Additionally, the evolution of some traits, for example, limb
number, can be examined only by comparing across species, as there is no variation within species.
Second, by integrating information on the traits of contemporary species with knowledge of their
ancestry, it is possible to estimate how traits have evolved over time (Felsenstein 1985,Garamszegi
2014,Harmon 2018,Nunn 2011, Pagel 1994,Revell &Harmon 2022). In such cases, phylogenetic
comparative analyses do not just statistically control for nonindependent data but can be used to
explicitly study evolutionary processes from current biological patterns (Frumhoff & Reeve 1994,
Losos 2011). They can infer the probable order of evolutionary events and tell us about the most
likely direction of causality. In this sense, phylogenetic methods are like statistical time machines,
transporting us back in time to estimate the changes in ancestral lineages that occurred as they
diverged. Comparative analyses are therefore tools that can help us describe and understand
diversity among species as well as test specific hypotheses about how and why traits evolve.

2.2. A Brief History of the Phylogenetic Comparative Method

Biologists have been using the comparative method for over a century; it was Darwin’s favorite
method, and in the 150 years since The Origin of Species, biologists have been using differences
between species to test hypotheses. However, it was not until the 1970s and 1980s that statistical
rigor was introduced into the process of testing evolutionary hypotheses using comparative meth-
ods. The issue of the nonindependence of species as data points first appeared in the literature as
a source of concern, not from experts in statistics or systematics, but from behavioral ecologists
testing hypotheses about trait adaptation in animals (Figure 1).

www.annualreviews.org • Phylogenetic Comparative Methods for Trait Evolution 183
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Clutton-Brock & Harvey (1977) used the comparative method to understand variation in the
social organization of primate species. The discussion of nonindependence is restricted to a small
section of the results where they point out that the correlation between social organization and
ecology could be due to evolutionary inertia—shared ancestry of different species leading to a
correlation between traits of interest—rather than cause and effect. They lament, “there is no
simple answer to this problem” (Clutton-Brock & Harvey 1977, p. 8), but they were the first to
try to address it by using genera, rather than species, as independent data points in their analysis.

Baker & Parker (1979) ran up against the same problem 2 years later, when analyzing bird
coloration. They include a section on the problem of nonindependence in their analyses, ac-
knowledging that their regressions are vulnerable to false positives due to some genera being
more represented than others in their dataset. They attempted to address this by testing their hy-
potheses both within and between genera. These papers are fine examples of scientists articulating
a problem in their study and offering a solution that they acknowledge is inadequate, a reminder
that papers do not have to be perfect to make a lasting contribution.

The publication of these papers did not prevent evolutionary biologists from treating species as
independent data points in comparative analyses. It was not until the publication of Joseph Felsen-
stein’s (1985) paper “Phylogenies and the ComparativeMethod,”where he introduced his method
of phylogenetic independent contrasts (PICs), that it really became unacceptable to ignore species
ancestry (Figure 1). In the revealing, penultimate paragraph,Felsenstein directly addresses the pa-
per’s reviewers who accused him of being “rather nihilistic” (Felsenstein 1985, p. 14) by insisting
on the need to take phylogenetic history into account. It is worth remembering that the review-
ers were writing at a time before genome sequencing, when confidence in detailed phylogenies
was still a distant dream.Was Felsenstein’s logic spelling doom for a method of inference used by
evolutionary biologists since Darwin? Maybe, he says in his response, but “nevertheless, efforts
to cope with the effects of the phylogeny will have to be made. Phylogenies are fundamental to
comparative biology; there is no doing it without taking them into account” (Felsenstein 1985,
p. 14).

Felsenstein’s method was developed to take into account when phylogenies were not perfectly
resolved, and computer packages were developed to implement these methods and make them
accessible for any “nihilistic” PhD student who understood the need for them (Grafen 1989,
Harvey & Pagel 1991, Pagel 1992) (Figure 1). These contributions, along with parallel advances
in phylogeny construction (Baum & Smith 2012, Felsenstein 2003), made comparative methods
the textbook standard and led to them being treated with the same respect as experimental data as
a way of testing hypotheses in evolution (Davies &Krebs 2009,Maynard-Smith&Holliday 1979).

3. WHEN,WHERE, AND HOW OFTEN DO TRAITS EVOLVE?

Characterizing when, where, and how often traits evolve is crucial to explaining biological diver-
sity. Answering these questions requires the reconstruction of ancestral trait values (Figure 2).
Even the original debates surrounding the validity of Darwin’s theory of evolution by nat-
ural selection relied upon ancestral trait values, so-called missing links (e.g., the feathers of
Archaeopteryx).

The biological insights that can be gained from reconstructing likely patterns of past evolution
are exemplified by research on plants and fungi. Approximately 300 million years ago (mya), the
formation of coal declined, but the reasons for this were unclear. Coal is produced by dead plant
matter, especially lignin, as it is resistant to degradation. Phylogenetic studies of fungi showed that
the evolution of lignin-degrading enzymes, called peroxidases, evolved approximately 290 mya
in white-rot fungi, which coincided with the cessation of coal production (Ayuso-Fernández
et al. 2018, Floudas et al. 2012) (Figure 3). Ancestral reconstructions have indicated that these

184 Cornwallis • Griffin
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When did the trait evolve?How many times did the trait evolve?

a b c

Data needed: time-calibrated phylogeny

Where did the trait evolve?

Linear model1

PGLS or PLMM2

Data needed: phylogeny and geographical range information

Transition rate models including
stochastic character mapping4

–Only categorical data
–Easier to interpret than GLMs for
   traits with 2+ states

Output: ancestral trait reconstruction = trait value of nodes

Are there also data on traits that in�uence dispersal?

Trait-dependent geographical
transition rate models
E.g., geographic ranges as lineage
states in a state-dependent speciation
and extinction model (GeoSSE)

Geographical transition
rate models
E.g., Dispersal–extirpation–
cladogenesis (DEC) and
Bayesian analysis of
biogeography (BayArea)

Discrete traitContinuous trait

Discrete traitContinuous trait

Create categories,
E.g., low and high

Output: ancestral trait reconstruction = geographical range of nodes
Combining the two gives an estimate
of the geographical origins of the trait

Generalized linear model (PGLMM)2,3

–Can handle binary, multinomial,
   and count data
–Reconstructions can be conditioned
   on other predictors

Check if the rate of evolution varies across lineages5,6

Compare models with single versus multiple rates of evolution using AIC, LRTs, and BFs

Check variation in transition states4–6

Compare models with di�erent rate
matrices (e.g. ER, SYM, ARD) using
metrics such as AIC, LRTs, and BFs

Data needed: phylogeny and trait data

References
1Martin & Hansen 1997
2Had�eld & Nakagawa 2010; Li et al. 2020
3Garamzegi 2014
4Revell & Harmon 2022
5Harmon 2019
6Boyko & Beaulieu 2020

Check if the rate of evolution varies over time5,6

Compare models with di�erent modes of evolution (e.g., BM, OU, ACDC) using AIC, LRTs, and BFs

Choose the best model

Option 2Option 1

Yes Yes No

Figure 2

A roadmap to reconstructing the evolutionary origins of traits. Data on continuous and discrete traits can be combined with data on
phylogenetic relationships to estimate when, where, and how often traits evolve using a variety of statistical models, such as PGLS,
PLMM, and GeoSSE. Abbreviations: ACDC, accelerating–decelerating model; AIC, Akaike information criterion; ARD, all rates
different; BF, Bayes factor; BM, Brownian motion; ER, equal rates; GeoSSE, geographic state speciation and extinction; GLM,
generalized linear model; LRT, log-likelihood ratio test; OU, Ornstein–Uhlenbeck model; PGLS, phylogenetic least squares; PLMM,
phylogenetic linear mixed models; SYM, symmetrical rates.

enzymes arose in two separate lineages in a remarkable example of convergent evolution that
dramatically reduced global levels of undegraded plant matter (Ayuso-Fernández et al. 2018). It
is also possible to use phylogenetic comparative techniques to estimate ancestral amino acid se-
quences (reviewed in Arenas 2022). This enabled researchers to resurrect ancestral versions of
lignin-degrading enzymes at different points back in time. In the lab, they tested the efficiency
of the ancestral enzymes at breaking down soft and hardwood and related this to the availability

www.annualreviews.org • Phylogenetic Comparative Methods for Trait Evolution 185
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a b

Figure 3

The evolutionary history of lignin-degrading enzymes and the cessation of coal formation. (a) White-rot fungi, such as this
Phanerochaete species, evolved lignin-degrading capabilities approximately 290 mya. Photo by Jerzy Opiola (CC BY-SA 4.0).
(b) Predicted ancestral lignin-degrading enzymes were expressed in Escherichia coli, and their lignin degradation capabilities were tested
in the laboratory. Photo by Kelsey M. Flanagan (CC BY 3.0).

of plant hosts across time,which showed that the evolution of lignin-degrading enzymes coincided
with the proliferation of angiosperm species (Ayuso-Fernández et al. 2018, 2019) (Figure 3).

This research demonstrates how phylogenetic comparativemethods can be used in conjunction
with (a) genomic information to characterize species relationships and physiological traits; (b) the
fossil record to ground truth the appearance of organisms, such as white-rot fungi, as well as
the cessation of geochemical cycles, such as coal production; and (c) experimental work to test the
functional aspects of ancestral traits (for additional discussion of integrating different approaches,
see Section 6).

3.1. Where Do Traits Evolve?

Phylogenies can also be used to identify the geographical areas or habitats where traits origi-
nated. For example, plants have colonized desert environments across the globe, but many of
the lineages that tolerate such conditions appeared before desertification (Axelrod 1972, Lichter-
Marck & Baldwin 2023). As a result, preadaptations to dry microhabitats, before deserts emerged,
are thought to have played an important role in their colonization (Axelrod 1972). Phylogenetic
reconstructions of ancestral biogeographic regions and biomes of rock daisies (tribe Perityleae) sup-
port this idea, showing that adaptation to bare rocky habitats preceded and facilitated the invasion
of deserts across North America (Lichter-Marck & Baldwin 2023).

There is now a range of techniques that can be used for reconstructing the ancestral geo-
graphical ranges of species (Ronquist & Sanmartín 2011, Sukumaran & Knowles 2018). These
techniques can address questions about the evolution of species biogeography and the origins
of their traits across clades that have been applied to different organisms from protists (Pinseel
et al. 2020) to fish (Cassemiro et al. 2023). They can also be used to trace evolutionary events
at quite different scales. For example, in cancer biology, phylogenetic biogeography models have
helped reconstruct the spread of cancerous cell lineages within specific patients (Alves et al. 2019).
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By building phylogenies of cell lineages from different tumors, it is possible to identify the pri-
mary site of cancer and track how subsequent lineages colonize different parts of the body during
metastasis (Alves et al. 2019).

3.2. Ancestral Reconstruction: Pitfalls and Considerations

Many of the analyses we have described so far rely on an accurate estimate of time. In some cases,
time may be directly measured, such as in microevolutionary experiments or when tracking the
spread of cancer cells (Alves et al. 2019). However, in other cases, we must rely on estimates from
molecular clocks and/or fossil evidence. Molecular clocks offer a tractable way of estimating evo-
lutionary time in phylogenies, especially in clades with poor fossil records (dos Reis et al. 2016).
The accuracy of molecular clocks is nevertheless still controversial, even when fossil data are avail-
able. Calibrating node ages in molecular phylogenies using fossil data is clearly important, but the
accuracy of the estimates is heavily dependent on the quality of fossil evidence and how this infor-
mation is incorporated into the tree-building process. This is not trivial (Budd &Mann 2023, dos
Reis et al. 2016). The development of newmodeling techniques that incorporate different types of
information (molecular, fossil, and geological) continues to offer more accurate timing estimates
(Wright et al. 2022). Although accurate estimates of absolute time are particularly important for
examining when and where traits evolved, the questions about trait relationships covered in later
sections rely more on relative divergence times across species.

Another important issue related to time is how fast traits evolve and whether this varies across
clades (Gingerich 2019). Often, rates of trait evolution are modeled as a Brownian motion pro-
cess, where trait divergences across species occur randomly and continuously through time at a
constant rate (Felsenstein 1985, 1988; Harmon 2018; Martins 1994; Revell & Harmon 2022). In
many cases, Brownian motion appears to fit well, but rates of change in trait values can vary over
time and clades. Estimating changes in the rates of trait evolution can lead to interesting insights;
for example, brain neuron density rapidly evolved independently in birds and mammals (Kverková
et al. 2022), there was a burst of morphological innovation in bills early on in the radiation of birds
(Cooney et al. 2017), and the rate of warning-signal evolution (aposematism) dictated opportuni-
ties for nondefended mimics in Western Ghat butterfly communities (Basu et al. 2023). But even
if variation in the rates of trait evolution is not the focus of one’s research, failing to take them
into account can lead to erroneous conclusions about how traits evolve (Freckleton 2009). For
example, live birth has evolved numerous times across squamate reptiles but at different rates in
different clades (King & Lee 2015). Failing to account for this rate variation leads to the ancestors
of reptiles being estimated to be live bearers and many live-bearing lineages showing reversals to
egg laying (Pyron & Burbrink 2014), both of which are thought to be biologically unlikely (King
& Lee 2015). Using techniques that model different rates of trait evolution across clades, for ex-
ample, hidden Markov models (Boyko & Beaulieu 2021, Garamszegi 2014), leads to the opposite
conclusions: The ancestor of squamate reptiles was egg laying and reversals from live bearing
to egg laying are rare (King & Lee 2015). Overviews of the different models of evolution, such
as Ornstein–Uhlenbeck (OU), accelerating–decelerating (ACDC), and variables rates, have been
published previously (Harmon 2018, Hernández et al. 2013, Pagel 1999, Powell et al. 2020).

4. STUDYING THE EVOLUTIONARY RELATIONSHIPS
BETWEEN TRAITS

4.1. How Do Traits Evolve?

Many hypotheses in biology involve testing predictions about the effect of one variable on an-
other, for example, how trade-offs between traits influence feeding specialization (Vamosi et al.

www.annualreviews.org • Phylogenetic Comparative Methods for Trait Evolution 187



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  L
un

d 
U

ni
ve

rs
ity

 L
ib

ra
rie

s,
 H

ea
d 

O
ffi

ce
 (

ar
-2

69
93

6)
 IP

:  
13

0.
23

5.
66

.1
0 

O
n:

 W
ed

, 0
6 

N
ov

 2
02

4 
06

:5
9:

43

ES55_Art09_Cornwallis ARjats.cls October 8, 2024 13:1

2014), whether accelerated climate change alters the timing of reproduction (Hällfors et al. 2020),
and whether females prefer to reproduce with males with larger ornaments (McLean et al. 2012).
These types of questions can be addressed using Felsenstein’s method of independent contrasts,
but this generally restricts analyses to two continuous traits. Grafen (1989) pointed out that in-
dependent contrasts are a form of linear model and that phylogenetic nonindependence of data
could be accounted for in a similar way using multiple regression analyses that are more flexi-
ble. Grafen called this the phylogenetic regression, and with some modifications, it later became
known as phylogenetic generalized least squares (PGLS) (Martins & Hansen 1997, Pagel 1997).

PGLS enables multiple variables to be analyzed together, allowing more nuanced tests of com-
peting hypotheses. For example, germline mutation rates have an important influence on rates of
adaptation and have been predicted to decline with effective population size and increase with
traits associated with slower life histories. As effective population sizes are often correlated with
life-history traits, these variables need to be analyzed together. Bergeron et al. (2023) sequenced
parents and offspring across 68 vertebrate species and used PGLS to show that effective popula-
tion size, generation time, age at maturity, and number of offspring produced per generation all
independently influenced germline mutation rates.

While PGLS has allowed a greater variety of predictor variables to be modeled, it is re-
stricted to analyzing variation in continuous traits (response variable), and it cannot deal with
more complicated sources of nonindependent data, such as repeated measurements of species
(Garamszegi 2014). These issues have been resolved by phylogenetic generalized linear mixed
models (PGLMMs), aided by developments in quantitative genetics (Felsenstein 1988, Hadfield
&Nakagawa 2010,Housworth et al. 2004, Lynch 1991).Multiple sources of nonindependent data
can be modeled using random effects (e.g., repeated measures of species, geographical region) in
PGLMMs, and new algorithms have enabled the analysis of a much larger range of response vari-
ables (e.g., binary, count,multinomial, zero-truncated traits) (Bürkner 2017,Hadfield&Nakagawa
2010). For example, discrete data, such as eye color, and count data, such as the number of fins,
can be analyzed using PGLMMs.

4.1.1. The advantages of phylogenetic mixed models. The flexibility of PGLMMs has ex-
panded the range of questions that can be answered using comparative analyses. One example
comes from research asking whether evolutionary processes over generations (microevolution)
predict long-term evolutionary patterns (macroevolution), providing insight into why some clades
are more evolvable than others. The links between micro- and macroevolution have been debated,
partly because of challenges in analyzing data at these different scales together (Gingerich 2019).
PGLMMs have been used to show how population-level characteristics, such asmutation rates and
genetic correlations between traits, can predict the divergence of traits across species over millions
of years (Houle et al. 2017, Opedal et al. 2023) (Figure 4). More broadly, such approaches allow
questions relating within-species variation (contemporary evolution) to variation across species
(deeper evolutionary time). This has included analyses of how the ecology of the human gut de-
termines levels of relatedness and cooperation of gut bacteria (Simonet & McNally 2021), how
genetic diversity within populations influences the spread of disease and whether this is predicted
by life-history differences across hosts (Bensch et al. 2021), and how gene expression networks
influence the evolution of venom across snakes (Barua & Mikheyev 2019).

While PGLMMs can handle data collected at different biological scales (e.g., individuals, popu-
lations, species), they can also be used formeta-analyses (Adams 2008,Hadfield&Nakagawa 2010,
Nakagawa et al. 2023). Meta-analytical techniques have been developed to quantify the strength
of the relationships between variables (effect sizes) from summary statistics such as regression co-
efficients or from means and standard deviations. Effect sizes can be analyzed with PGLMMs to
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b

a Immigrans-tripunctata

Zaprionus

Hirtodrosophila

Mycodrososphila

Virilis-repleta

Scaptomyza

Idiomyia         (silvestris       )

Sophophora         (melanogaster       )

Chymomyza

Scaptodrosophila

Steganinae

Figure 4

Mutation rates within species of (a) Drosophila busckii were associated with (b) differences in standing genetic variation and wing
divergence across species. By measuring 50,000 wing landmarks from 117 taxa representing 40 million years of evolution (shown in
different colors), Houle et al. (2017) used phylogenetic mixed models to examine how microevolutionary parameters relate to
long-term evolutionary patterns (inset shows the phylogeny of the major groups included in the study). Panel a photo by Charlie
Cornwallis; panel b adapted with permission from Houle et al. (2017).

examine how relationships evolve across species while controlling for variation across studies, for
instance, due to sample size and study design differences.Phylogeneticmeta-analysismethods now
enable questions related to differences in means and differences in variation to be analyzed (e.g.,
Bensch et al. 2021). For example, it was shown that megafauna (species of animals over 45 kg) have
important effects on ecosystems across six continents, reducing the average abundance of small
mammals and increasing heterogeneity in plant cover and biomass (Trepel et al. 2024).

4.1.2. Phylogenetic regressions: pitfalls and considerations. PGLS and PGLMMs have fea-
tures that are important to highlight. First, PGLS and PGLMMs can be used for reconstructing
ancestral values of traits (Goolsby 2015, Hadfield & Nakagawa 2010, Martins & Hansen 1997)
(Figure 2) by predicting the response variable at internal nodes [reported as residuals from the
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intercept that are also known as best linear unbiased predictors (BLUPs) (Hadfield & Nakagawa
2010, Lynch 1991)]. It is not uncommon to see studies that examine relationships between traits
using PGLS or PGLMMs to then use different modeling techniques for ancestral reconstructions,
which seems unnecessary. Also, variance in the tree tip and node estimates (BLUPs) relative to the
total trait variance is a measure of the strength of the phylogenetic effects, sometimes referred to
as phylogenetic heritability, that can circumvent separate tests of phylogenetic signal (Hadfield &
Nakagawa 2010, Lynch 1991, Nakagawa et al. 2017).

Second, the need to consider the rate of trait evolution across time and across different clades
(Section 2) also applies to analyzing relationships between traits. By default,most implementations
of PGLS and PGLMMs assume response variables evolve via Brownian motion. It is therefore
important that this assumption is checked before using linear models, and if not met, there are
a range of options for analyzing traits whose rates of evolution deviate from Brownian motion
(Harmon 2018, Hernández et al. 2013, Pagel 1999, Powell et al. 2020).

Third, regression models make assumptions about predictor variables that may not necessarily
hold: They are assumed to causally influence the response variable, be measured without error,
and consist of phylogenetically independent observations [only phylogenetic dependence in the
response variable is modeled (Westoby et al. 2023)]. However, predictor variables are often traits
that are evolving, and it can bemore appropriate to estimate the phylogenetic correlations between
traits (Westoby et al. 2023) (Figure 5). In more drastic cases, ignoring phylogenetic dependence
in predictor variables can lead to relationships being both over- and underestimated (Sanchez-
Martinez et al. 2020, Westoby et al. 2023).

4.2. How Do Traits Coevolve?

Questions about the way traits coevolve are similar to the questions discussed in Section 3.1 that
were concerned with the relationships between traits. However, studies that explicitly estimated
the coevolutionary relationships between traits historically examined discrete characters, whereas
regression-based methods have more often been applied to continuous traits (Felsenstein 1985,
Maddison 1990, Pagel 1994). Models of discrete trait evolution have focused on estimating rates
of change between character states over evolutionary time (transition rates), such as changes in
DNA bases ( Jukes & Cantor 1969) and the evolution of mating strategies (Pagel 1994, Ridley
1983).

Transition ratemodels were extended to analyze correlated evolution betweenmultiple discrete
characters across phylogenies (Maddison 1990, Pagel 1994).They compare the explanatory power
ofmodels where changes in one trait depend on the states of other traits (coevolutionarymodels) to
models where rates vary independently across traits (independent evolution models) (Pagel 1994).
For example, transition rate models have been used to understand variation in the structure of
human societies. Human ritual sacrifice has been proposed to evolve as a mechanism to control
stratification in wealth and maintain social class structure (Winkelman 2014). This idea has been
controversial in the absence of analyses controlling for nonindependence among human cultures.
Watts et al. (2016) used models of discrete trait evolution to estimate whether rates of change
in social stratification between egalitarian, moderately stratified, and highly stratified societies
differed according to the presence and absence of ritual sacrifice (Watts et al. 2016) (Figure 6).
They found that models where states of social stratification were allowed to coevolve with the
presence of human ritual sacrifice best explained the data (Watts et al. 2016).

The possibilities for analyzing coevolutionary relationships between traits have also been
expanded by developments in linear modeling. The need to estimate genetic correlations be-
tween traits using pedigree data in animal and plant breeding programs led to the development
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How many times have traits independently evolved? (Results from the analysis described in Figure 2a)

Given the small sample size, consider
whether statistical analysis is appropriate

Is causality between the variables clear, and are the
predictor variables independent of phylogenetic history?

Discrete response traitContinuous response trait

PGLS1,4 PLMM2,3

Continuous or discrete traits Only discrete traits

References
1Had�eld & Nakagawa 2010
2Gallinat & Pearse 2020
3Hansen et al. 2022
4Sheenan et al. 2023

Yes No

No Yes

PGLM2,3 PGLMM2,3

NoYes

MR-PGLMM2

Yes and NoYes and No

Transition rate analysis1,4,5MR-PGLMM2

No

≥10 times<10 times

Correlated traits (results from the analysis described in panel a)

2 traits

Phylogenetic
path analysis5,7

All continuous1 continuous, 1 discrete

Create categories,
e.g., low and high

Time series analysis
under development4

Reconstruct the discrete trait’s value
for each node (Figure 2a)

Create a dataset where each node is
classi�ed according to its state and

its descendant nodes (states)

PLMM with states as a predictor to
test whether continuous trait di�ers

across di�erent transitions1–3

Transition rate model5, 6 to test whether:
Transitions are greater than 0

(Compare models where rates are �xed to 0 to
models where rates are estimated using AIC, LRT, or BF)

Transitions are signi�cantly di�erent
(Compare models where rates are forced to be equal

to models where rates are estimated using AIC, LRT, or BF)

All discrete

3+ traits

Are there nonindependencies in the data in addition to phylogeny, e.g., repeated measures on species?

All continuous

5Garamzegi 2014
6Revell & Harmon 2022
7van Hardenberg 2013

a  How traits coevolve

b  Causality between traits and the order of trait evolution

Figure 5

A roadmap to using phylogenetic comparative methods to (a) address how traits evolve and (b) infer causality
and the order of trait evolution. Abbreviations: AIC, Akaike information criterion; BF, Bayes factor; LRT,
log-likelihood ratio test; MR-PGLMM, multi-response PGLMM; MR-PLMM, multi-response PLMM;
PGLM, phylogenetic generalized linear model; PGLMM, phylogenetic generalized linear mixed model;
PGLS, phylogenetic generalized least squares; PLMM, phylogenetic linear mixed model.
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a b

Egalitarian Moderate social
strati�cation

High social
grati�cation

A = HS gain

C = HS loss

F = HS gain

H = HS loss

B = SS gainE = SS loss D = SS gainG = SS loss

Ritual human
sacri�ce

Figure 6

Coevolution of human societal traits and the order they evolved in. (a) Human ritual sacrifice evolved as a way to maintain social class
structure and stratification of wealth. (b) A transition rate analysis examining the coevolution of human sacrifice (HS) and high social
stratification (SS). Capital letters (A–H) represent the rates at which the indicated transitions occur, and the thicknesses of the arrows
are proportional to these rates of change between states. The results of the analysis show that HS prevents the loss of SS, i.e., the rate of
SS loss is lower in societies in which HS is present (G) compared to that in societies where HS is not present (E). Panel a created by
Daphne Breeman (CC BY-SA 4.0); panel b adapted with permission from Watts et al. (2016).

of multi-response generalized linear mixed models (MR-GLMMs) (Sorensen & Gianola 2002,
Walsh & Lynch 2018). MR-GLMMs analyze variation in multiple response traits and allow
their covariances to be estimated at different levels, such as individuals, cohorts, and genotypes,
as specified by random effects. When phylogeny is fitted as a random effect (MR-PGLMMs),
multiple-response models can be used to estimate phylogenetic correlations between traits.

As MR-GLMMs can model both continuous and discrete response variables together, it is
possible to examine the coevolutionary relationships between a much greater range of traits. For
example, species that reproduce early in life are predicted to evolve behaviors that quickly increase
resource and mating acquisition. Eckerström-Liedholm et al. (2019) repeatedly measured the be-
havior andmetabolic rates of 20 species of killifish and usedMR-PGLMMs to analyze correlations
between traits within species and across the phylogeny (Eckerström-Liedholm et al. 2019). This
revealed that trade-offs between current and future reproductive success were more strongly re-
lated to mating behaviors compared to trade-offs between traits involved in energy acquisition
(Eckerström-Liedholm et al. 2019).

4.3. How Do Traits of Different Species Coevolve?

Coevolution between different species, such as mutualisms, host–parasite interactions, and pre-
dation, have featured prominently in ecological and evolutionary studies (Dismukes et al. 2022,
Douglas 2022, Mouquet et al. 2012). As a result, a range of phylogenetic methods are avail-
able to test for cospeciation between different groups of organisms (Dismukes et al. 2022,
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Hadfield et al. 2014, Hembry &Weber 2020).While tests of cospeciation reveal whether combi-
nations of species have been associated over time, they do not test whether traits in one group of
species (e.g., hosts) coevolve with the traits of another group of species (e.g., parasites).

Extensions to PGLMMs can be used to analyze how the traits of different groups of organisms
coevolve (Gallinat & Pearse 2021, Hadfield et al. 2014). For example, in studies of hosts and par-
asites, the effects of host phylogenetic history, parasite phylogenetic history, and their interaction
can be fitted as different random effects to understand their effect on different processes, such as
variation in microbe abundances across hosts and how the traits of hosts relate to the traits of par-
asites, in addition to patterns of cospeciation (Hadfield et al. 2014). PGLMMs have the advantage
that additional variables can be included in models to examine patterns at different scales [e.g., ge-
ographical region can be fitted as a random effect (Gallinat & Pearse 2021, Hadfield et al. 2014)]
and control for variation in data quality [e.g., sequencing depth fitted as a fixed effect (Pankey et al.
2022)].

4.4. Phylogenetic Correlations: Pitfalls and Considerations

An important distinction between phylogenetic regressions and phylogenetic correlations is that
missing data are handled differently. In regression analyses, missing data are not permitted in
predictor variables. As a result, datasets can be greatly reduced in size when multiple predic-
tor variables are included in analyses and each has nonoverlapping missing values, which can
be common in comparative datasets (Molina-Venegas 2023, Nakagawa & de Villemereuil 2019).
MR-PGLMMs permit missing data in response variables, allowing correlations between traits to
be estimated without pruning datasets down to complete information. Missing values in response
variables are predicted based on the effects in the models (fixed and random), such as phylogeny
(Nakagawa & de Villemereuil 2019, Thorson et al. 2023). Studies have shown that the relation-
ships between variables can be accurately estimated with quite high levels ofmissing data (Hadfield
&Nakagawa 2010,Nakagawa & de Villemereuil 2019). Such models can be used to generate pre-
dictions for species that lack trait information across different contexts, such as different regions
or different habitats, which can be used to direct subsequent field or experimental data collection
or inform conservation practices (Arnold &Nunn 2010, Debastiani et al. 2021, Goberna & Verdú
2016, Mouquet et al. 2012).

5. INFERRING CAUSALITY AND THE ORDER OF TRAIT EVOLUTION

Comparative analyses provide correlative evidence, but we often want to gain insight into the
causal links between traits. For example, cooperative breeding has been predicted to bemore likely
to evolve when females mate monogamously, as this increases both relatedness within families
and the genetic benefits of helping parents raise more siblings (Boomsma 2007). Consistent with
this idea, monogamy is positively correlated with cooperative breeding across birds (Cornwallis
et al. 2010). However, living in family groups may reduce the opportunities for multiple mating,
leading to the opposite direction of causality. How do we tell whether this correlation is more
likely due to monogamy and higher relatedness affecting the evolution of cooperative behavior
or to cooperative behavior influencing monogamy (Cornwallis et al. 2010, Dillard & Westneat
2016)?

An important way to test the effect of one trait on another is to complement comparative
analyses with follow-up experiments (see Section 6) (Arnold & Nunn 2010). Such experiments
can, however, be very challenging or even impossible to conduct. Analytical techniques that pro-
vide insights into the most likely causal relationships between traits are therefore important tools,
enriching our knowledge of the evolutionary process.
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5.1. Discrete Traits

Inferences about the causal relationships between discrete traits can be gained using transition
rate analyses, such as those used to investigate ritual sacrifice and the structure of human societies
(Watts et al. 2016). By comparing whether transitions from egalitarian to highly stratified human
societies occur more frequently from a state of ritual sacrifice, versus a state of no sacrifice, it was
deduced that sacrificial practices stabilize stratified social class systems (Figure 6). In the case of
cooperative breeding and monogamy, low levels of polyandry were found to precede the evolu-
tion of cooperative breeding, rather than levels of polyandry changing after cooperative breeding
evolved (Cornwallis et al. 2010). Similar types of analyses have been used to investigate causality
across a wide range of biological scenarios, including the effect of internal fertilization on sperm
morphology across animals (Kahrl et al. 2021), whether antibiotic tolerance evolves before re-
sistance in cystic fibrosis infections (Ghoul et al. 2023), and whether brood parasitism evolves in
response to cooperative breeding across birds (Wells & Barker 2017).

Transition rate analyses are restricted to discrete traits, but methods are available to infer how
discrete traits influence rates of continuous trait evolution (Hansen et al. 2022, May & Moore
2020). For example, many insects that feed on nutritionally imbalanced food sources rely on
microbial symbionts to supplement their diets (Douglas 2022). Whether such relationships oc-
cur because symbionts allow nutrient-imbalanced resources to be colonized, or whether insects
feeding on such resources recruit symbionts to supplement their diets, has been unclear. Recon-
structing the presence of symbionts (discrete trait) and using this to predict changes in nutrients
(continuous traits) showed that symbiosis evolved before the invasion of feeding niches that are
depauperate in B vitamins (Cornwallis et al. 2023).

5.2. Continuous Traits

Estimating the causal relationships between continuous traits has been more challenging, but
developing path analysis to include phylogenies has helped (von Hardenberg & Gonzalez-Voyer
2013). Path analysis works by establishing a set of potentially plausible biological hypotheses that
specify how traits affect each other. Evidence for these different hypotheses can be evaluated
using a series of phylogenetic regressions in which the proposed causal relationships between
traits are dictated by which variables are predictors and which variables are response variables
(von Hardenberg & Gonzalez-Voyer 2013). For example, the increase in global urbanization has
led to great interest in the traits that enable species to adapt to urban environments (Szulkin et al.
2020). This has been challenging to address because many behavioral, ecological, and life-history
traits are intercorrelated. Santini et al. (2019) used phylogenetic path analysis to estimate the
causal relationships between traits that influenced the presence of different groups of mammals
in urban environments. Their analyses showed that litter sizes consistently increase in urban
environments but that changes in other traits, such as body size and diet diversity, differ across
mammal groups (Santini et al. 2019).

5.3. Inferring Causality: Pitfalls and Considerations

The lack of techniques for investigating causal relationships between continuous traits has meant
that researchers have often categorized continuous traits (e.g., high versus low) and used transi-
tion rate models to investigate causality. How traits are categorized can have an influence on the
outcome of such analyses, so it is important to examine the sensitivity of results to these decisions.
While phylogenetic path analysis can avoid the pitfalls of categorizing continuous traits, it is not
appropriate for all situations: It requires relatively large sample sizes, and it cannot be used to
assess causality between just two variables.
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Examining the causality between continuous traits is an area that would benefit from further
development. Adopting techniques used for time-series analysis may offer some options. The
branch lengths of phylogenetic trees provide an estimate of evolutionary time that can then be
used to test whether changes in one continuous trait precede or follow the changes in a second
continuous trait. For example, across human societies, religion and politics are recognized to be
historically intertwined, but how they have coevolved has been less clear. Sheehan et al. (2023)
recently used phylogenetic methods based on time-series analysis to test whether continuous
estimates of religious authority predict subsequent changes in continuous estimates of political
authority and vice versa across 97 human Austronesian societies.

6. HOW TO APPROACH A PHYLOGENETIC COMPARATIVE ANALYSIS

How does one go about designing a phylogenetic comparative study to address questions about
trait evolution? Not all datasets are suitable for addressing the question of interest, so how do we
proceed? What we say here is not new, but checking the suitability of datasets is often forgotten
with the enthusiasm for running new analyses. It can be useful to assess the potential limitations of
datasets by going through a series of questions (Figures 2 and 6), which can also help clarify what
analytical techniques are most appropriate for particular studies (for a list of analytical techniques
with example studies and the software, see Table 1).

6.1. How Large of a Sample Size Do I Need?

If the aim of the study is to examine where, when, or how often traits evolve, then the answer is
relatively straightforward. The set of species that is chosen depends on what biological insight
the investigators want to gain. This may require thousands of species, for example, if the aim is to
address howmany times flight has been lost in birds, whereas only a few species may be needed for
other questions, such as whether the ancestor of birds was flightless or not (Sackton et al. 2019).

For studies examining the evolutionary relationships between traits, the question of how many
species are needed may be more difficult to answer. Estimating the sample size required to detect
an effect can be challenging for any statistical analysis (Nakagawa et al. 2024), but for comparative
analyses, there are extra considerations (Boettiger et al. 2012). As Felsenstein pointed out in his
nihilistic worse-case scenario (Section 2.2), the power of statistical analyses depends on how traits
are distributed across the phylogeny (Boettiger et al. 2012, Felsenstein 1985, Frumhoff & Reeve
1994, Uyeda et al. 2018). This is easily demonstrated for discrete characters, where a single origin
among hundreds of sampled species prevents any statistical tests regarding that trait’s evolution.
The problem arising from treating species as replicates also applies to continuous traits but can be
less obvious to spot. Plotting differences in trait values from the mean across the phylogeny can
be useful to assess the number of independent increases and decreases in traits across the sample.
A crucial first step in determining the limitation of any comparative dataset, or in selecting which
species to sample, is therefore estimating how frequently traits evolve or change over evolutionary
time (Figures 2 and 6).

6.2. At What Scale Do Traits Vary?

If the rate of trait evolution is too fast or too slow across the sampled set of species, the infer-
ences that can be made from comparative analyses can be limited (Frumhoff & Reeve 1994). Basic
measurements of how much traits vary between closely and more distantly related species can be
very informative. Relatively little difference between groups of species that vary in their diver-
gence times is an indication that traits are evolving slowly and wider taxonomic sampling may
be needed to capture deeper evolutionary timescales. Relatively large differences, even between
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closely related species, can be a sign of the opposite problem—traits are evolving fast, eroding
any phylogenetic signal. In such cases, if the aim is to gain insights into the evolutionary process,
for example, by reconstructing ancestral trait values, then sampling more closely related species
may be needed, although traits may be variable for other reasons, such as measurement error. Low
phylogenetic signal is, of course, not a problem for studies where estimating evolutionary effects
is not the focus.

6.3. What if Data Are Missing for Some Species?

As mentioned above, there are phylogenetic comparative methods (e.g., MR-PGLMM) that can
cope with some degree of missing data, but how does one decide if this is too much? Some key
considerations include howmissing data are distributed across the phylogeny, the degree to which
missing data can be predicted by phylogenetic history, and the strength of relationships with other
traits. This is an area of active development, and techniques are available for assessing each of
these points and evaluating the accuracy with which missing data can be predicted (Debastiani
et al. 2021, Molina-Venegas 2023, Nakagawa & de Villemereuil 2019).

6.4. What if the Quality of Data Varies Across Species?

The quality of data for each species may vary; for instance, different numbers of individuals may
have been studied for different species. Phylogenetic meta-analysis has been developed to account
for differences in the accuracy of data by weighting data points by their estimated variances [e.g.,
studies with fewer individuals generally produce more variable data (Adams 2008, Hadfield &
Nakagawa 2010, Nakagawa et al. 2023)]. It is also worth considering whether there are other
factors that can influence the accuracy of data and how they can be incorporated into models. For
example, some species may have been studied for longer periods of time or studied in more places
than others, and projects that include genome data might want to include measures of sequencing
quality.

6.5. What About Uncertainty in Phylogenetic Relationships?

With the increased availability of sequence data, the accuracy of phylogenies has greatly improved,
but uncertainty around relationships between lineages remains. Tree building techniques docu-
ment this uncertainty in different ways, such as bootstrap values in maximum likelihood analyses
or by producing sets of the most likely trees in Bayesian analyses (Baum & Smith 2012). Such
estimates of uncertainty can be integrated into comparative analyses. For example, Bayesian com-
parative methods use algorithms that iteratively estimate effects (e.g., the regression coefficient
of trait x on trait y or the amount of variance in trait y explained by the phylogeny). Uncertainty
in phylogenetic relationships can be incorporated into such models by inputting a different tree
from a sample of likely trees across iterations (Garamszegi 2014, Pagel & Meade 2006, Revell &
Harmon 2022).

7. DEEPENING OUR UNDERSTANDING OF HOW ORGANISMS
EVOLVE BY INTEGRATING DIFFERENT SCIENTIFIC APPROACHES

7.1. The Feedback Between Comparative Studies and Data Collection

There can be tension between researchers with muddy boots collecting data in the field and
those in front of computers reducing a lifetime’s worth of data to a single data point in com-
parative analyses. In reality, comparative analyses cannot be done without empirical data on each
species, and comparative analyses can be informative for directing future empirical work [e.g.,
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phylogenetic targeting (Arnold & Nunn 2010)]. They are complementary approaches that pro-
vide us with different insights into the ecology and evolution of species. Here, we discuss some of
the potential misconceptions concerning the extent to which field and experimental studies can
be integrated with comparative studies.

7.1.1. Traits that are highly variable within species are not suitable for comparative anal-
yses. Comparative studies in ecology and evolution have focused on between-species variation
and characterizing traits at the species level (e.g., average body size). This has sometimes led to
the belief that comparative methods are not suited to analyzing the evolution of traits that vary
substantially within species, but this depends on the sources of within-species variation and the
aims of the study (Garamszegi 2014).

First, it is necessary to determine the extent to which within-species variation is due to mea-
surement error, using repeatability analyses (Nakagawa et al. 2017). Low repeatability due to high
measurement error is a potential problem for all studies, not just comparative analyses. Solving
such issues often requires more accurate measurements or more thorough methodology (e.g.,
more measurements per individual). Second, it is important to establish whether traits change
across environments and whether this is relevant to the question being asked. If trait changes
are not directly relevant to the study, then data should be collected while controlling for such
environmental effects (e.g., all individuals are measured under the same environmental condi-
tion). If trait changes are relevant to the study, then responses need to be quantified by repeatedly
measuring individuals across environments (sometimes referred to as the evolution of reaction
norms or random slopes) (Goolsby 2015). Under such circumstances, comparative analyses can be
used to understand how the relationships within species evolve across species (Bensch et al. 2021,
Eckerström-Liedholm et al. 2019, Hällfors et al. 2020, Houle et al. 2017, Opedal et al. 2023).
This can be done by calculating the effect size of the relationship for each species (Nakagawa
et al. 2023) or by analyzing raw data with PGLMMs. For example, variation in how much traits
change across environments due to species differences and phylogenetic history can be quantified
by fitting random slopes at the species and phylogenetic level in PGLMMs (Gallinat & Pearse
2021).

Third, is the goal of the study to gain insight into how traits evolve, for example, using an-
cestral reconstructions? If so, then it is important to quantify whether within-species variation
swamps any signal of between-species variation (low phylogenetic signal). If this is the case, it is
not possible to use phylogenies to predict differences between species and their ancestral nodes.
Low phylogenetic signal in average trait values does not, however, always mean there is low phy-
logenetic signal in how traits change with environments. For example, average body temperature
across a group of animals may be similar and have low phylogenetic signal, but the way animals
respond to changes in temperature (reaction norm) may be quite different and depend on their
evolutionary history. If the study is not concerned with estimating patterns of past evolution, then
greater within-species variation relative to that between species may not be a problem.

7.1.2. Species complexities are not captured by the simplistic measures used in compara-
tive studies. The biology of individual species is extremely complicated, and these complexities
are often averaged away in summary measures when constructing datasets for comparative
analyses—this is one of the ways comparative biologists can upset the researchers collecting the
data! Whether this causes problems for drawing conclusions from the analyses depends on the
aim of one’s study and the way it was done. For example, comparative methods have been exten-
sively used to study the evolution of brains and cognitive abilities (Logan et al. 2018). Brain size
has been used as a proxy for cognitive ability and intelligence, as these are difficult to quantify
across large numbers of species. However, this approach has received criticism as cognition is a
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highly complex trait (Healy & Rowe 2006, Logan et al. 2018). Other, more accurate measures
of cognitive ability may be more appropriate, such as the density, morphology, and structure of
brain neurons (the connectome),which are now being characterized for greater numbers of species
(Assaf et al. 2020). The usefulness of comparative studies therefore depends on how hypotheses
are converted into comparative tests (e.g., how brains evolve versus how cognition evolves) and
whether researchers accurately capture biological processes by what they measure (e.g., brain size
versus the connectome).

7.1.3. Comparative analyses reduce the value of collecting more data. The success of com-
parative analyses in summarizing patterns sometimes means they are considered a topic killer. If
data have been collated across 5,000 species, what is the point in collecting data on just one more
species? An alternative viewpoint is that comparative analyses help show where more data need to
be collected and which species may offer the greatest new insights. Following on with the example
of brain size, comparative studies have documented which species have relatively large and small
brain sizes. If we want to find out more about the causes and consequences of evolving brains
of different sizes, these are the species that should be targeted. Without examining phylogenetic
patterns of brain size while controlling for correlated factors, such as body size, species with un-
usually large or small brains are difficult to identify. We can also take inspiration from research
on the lignan-degrading capacities of fungi that illustrates how comparative genomics enables ex-
perimental tests across past evolutionary time points (Ayuso-Fernández et al. 2019). The utility of
comparative analyses in guiding experimental studies is nevertheless underutilized.

7.2. Integrating Different Types of Data

It is an exciting time for comparative ecological and evolutionary research. Published informa-
tion is accumulating at a breakneck speed across a wide range of species, and new types of data
are continually becoming available. Extensive data on the geographical distributions and abun-
dances of species, through remote sensing and logging technology, offer exciting possibilities for
understanding the biogeography and conservation requirements of species (Debastiani et al. 2021,
Mouquet et al. 2012,Whitford &Klimley 2019). This has led to developments in ecological niche
modeling (also known as species distribution models) that can now be integrated with phyloge-
nies to gain greater insight into the way traits influence the evolution of species ecologies and vice
versa (Alvarado-Serrano & Knowles 2014).

Data on genomes, transcriptomes, proteomes, metabolomes, connectomes, and microbiomes,
and other omic data, offer new opportunities to gain a deeper, more mechanistic understanding
of the biology of species (Nagy et al. 2020, Smith et al. 2020). The challenges associated with
gaining omic data previously restricted comparisons to just a few species. This often led to the
N= 1 problem, where only one or a few species were compared, yet multiple independent origins
of trait evolution are required to statistically test for associations between traits, which can have
important effects on the conclusions that are drawn (e.g., Dewar et al. 2021). However, higher-
throughput omic data collection combined with comparative methods is resulting in research of
greater scope (Nagy et al. 2020, Smith et al. 2020). For example, phylogenetic comparative analyses
of 5,397 bacterial genomes showed that species that inhabit multiple environments (generalists)
have expanded genetic machineries for producing extracellular proteins, which have important
effects on resource acquisition and species interactions (Garcia et al. 2020). Phylogenetic compar-
ative methods can now even be used to reconstruct ancestral genomes, providing novel insights
into how genomes form (Muffato et al. 2023).

As more studies are published and more data become available, synthesizing information be-
comes an increasing challenge. Reproducibility and transparency in how information is collected
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has never been more important, and many useful guides are out there (e.g., Foo et al. 2021).
Techniques that integrate phylogenetic information with meta-analytic methods are now well es-
tablished and provide a powerful quantitative framework for synthesizing research (Adams 2008,
Hadfield & Nakagawa 2010, Nakagawa et al. 2023).

8. CONCLUSIONS

Anyone can learn comparative methods, and it is a rewarding process. Sometimes the comparative
approach is thought of as a quick and easy option, as data are already available. In our experience,
this is not the case, and comparative studies can be complicated and arduous. The generality of
the insights that emerge makes the effort worthwhile, and some questions can be addressed only
by taking a comparative approach. We encourage one to dive in. Maximizing the impact of one’s
study starts at the very beginning of the process: Any one of the statistical and analytical tech-
niques we discuss in this review is of limited use unless the biological question being addressed is
defined clearly and care is taken to avoid mining the ever-growing data mountain for correlations
(Freckleton 2009).
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