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ABSTRACT

Aim: Abiotic environmental conditions shape ecological and evolutionary processes, yet quantifying their influence on organ-
isms remains challenging due to variation among metrics and their intercorrelations. This study evaluates the utility of temporal
environmental predictability measures and assesses their explanatory power in phylogenetic comparative analyses.
Innovation: We systematically compare widely used metrics of predictability and explore their correlations with environmental
means and variances in a global meteorological dataset. Using cooperative breeding birds as a case study, we assess the impact
of including predictability metrics in phylogenetic comparative analyses. We demonstrate the consequences of choosing specific
metrics and the trade-offs between increased data inclusion and model interpretability.

Main Conclusions: Predictability metrics, though intuitively meaningful, have been conceptualised and quantified with di-
verse approaches. We found that different measures of predictability can exhibit contrasting global patterns and strong cor-
relations with other environmental quantities. Therefore, our findings caution against overloading statistical analyses with
correlated predictors, highlighting the need for a thoughtful selection of environmental metrics to avoid spurious interpretations
in ecological and evolutionary studies.

1 | Introduction such as dormancy, trophic interactions, species diversity and

conservation (Hawkins and Porter 2003; O'Connor et al. 2009;

Variation in abiotic environmental conditions has been argued to
be important for evolutionary biology, macroecology and conser-
vation biology (Parmesan 2006; Wiens et al. 2010). For example,
temperature and rainfall are key components of the environ-
ment that can drive eco-evolutionary dynamics, community
stability and life history evolution (Orzack 1985; Drake 2005;
Parmesan 2006; Barabds et al. 2018; Yamamichi et al. 2023).
Biologists have increasingly used measures of such climatic vari-
ables from meteorological datasets to characterise the temporal
dynamics of environments that species inhabit on a global scale,

Araujo et al. 2011; Jetz and Rubenstein 2011; Cornwallis
et al. 2017; Rubio de Casas et al. 2017). Understanding how cli-
matic variation influences processes of adaptation and species
population dynamics has become a more pressing issue with
recent climate change (Loarie et al. 2009; Bathiany et al. 2018).

Among the terms commonly used to describe climate, tem-
poral predictability refers to the extent to which climatic vari-
ables follow a non-random temporal structure. It has been used
in phrases such as predictable environment, unpredictable
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rainfall and high predictability (Fisher et al. 2013; Cornwallis
et al. 2017; Fristoe et al. 2017; Griesser et al. 2017; Ringen
et al. 2019; Firman et al. 2020; Martin et al. 2020; Diamant
et al. 2021). While formal metrics of predictability often focus
on autocorrelation or periodicity within a single variable, many
organisms rely on consistent environmental cues, regardless
of their specific statistical properties, to anticipate future con-
ditions. For example, UK great tit populations use spring tem-
perature to time breeding in anticipation of peak caterpillar
availability (Charmantier et al. 2008). Red deer use rainfall to
predict plant growth (Nussey et al. 2005). The termination of the
dormant stage in freshwater invertebrate eggs is closely linked
to temperature increment or a recent rain event (Forrest and
Thomson 2011; Stenert et al. 2017). These examples highlight
how organisms use temporal structure in the environment to
make adaptive decisions, supporting the biological relevance of
studying environmental predictability.

Predictability can be difficult to quantify. Most commonly,
predictability refers to whether past observations are autocor-
related with current observations (Colwell 1974; Koenig and
Knops 2000; Norden et al. 2007; Botero et al. 2014). In some
cases, predictability is characterised by both seasonality (parti-
tioned data variance) and autocorrelation in the residuals (e.g.,
Marshall and Burgess (2015)). Predictability has also some-
times been used interchangeably with variability (SD), where
low predictability corresponds with high variability (Jetz and
Rubenstein 2011). In other cases, measures of unpredictability
have been defined by life history outcomes, such as offspring
mortality (Caro et al. 2016) and rates of development (Brumbach
et al. 2009). Consequently, the concept of predictability, while
intuitive, has been studied using various metrics, with unclear
relationships between them and uncertain impacts on conclu-
sions in comparative studies.

In addition to predictability, the contributions of tempera-
ture and rainfall to species adaptations are often summarised
across different moments of their temporal distribution. These
moments usually include the average (mean) and the variation
using standard deviations (SD) or sometimes the variance.
These two quantities, average and SD, have been widely used
in biological studies to capture differences in environmental
conditions, such as temperature and rainfall and how much
they fluctuate over time (Lawing and Polly 2011; Diamant
et al. 2021). For example, it has been argued that environments
with a high average temperature and a low/variable rainfall
are relatively harsher environments for breeding birds and
mammals (Cornwallis et al. 2017; Firman et al. 2020; Martin
et al. 2020). To capture such harsh environments, do we need
all climatic variables and moments of their temporal distri-
butions, or is it potentially compromised by the correlation
between each quantity? And more generally, is it problematic
to include multiple climatic quantities into these phylogenetic
comparative studies?

Here, we address these questions in three sections. First, we
begin with a systematic comparison of the most frequently
used predictability measures (Section 2). This section aims
to illustrate what the conceptual similarities are between dif-
ferent predictability measures and how they differ from each
other in their calculations. Second, we apply these measures

to a standard global meteorological dataset (Section 3.1) to ask:
how are climatic quantities distributed across the globe, and to
what extent each measure correlates to each other on the scale of
species distribution ranges. Third, we examine the explanatory
power gained from adding multiple climatic quantities—the
mean, standard deviation and predictability of both temperature
and precipitation—in the context of phylogenetic comparative
analysis (Sections 3.2-4.2). We reanalysed a published dataset
on the evolution of cooperative breeding in birds as a case study
(Cornwallis et al. 2017). We then return to the biological mean-
ing of predictability in the discussion, and especially how it de-
pends upon the perception of organisms and not just climatic
variables.

2 | How to Measure Predictability?

Before comparing the difference between the commonly
used predictabilities, we introduce their definition and un-
derlying concepts. We compared three different methods for
quantifying predictability: Colwell's predictability with fixed
binning, Colwell's predictability with dynamic binning, and
normalised spectral entropy. The first two methods were de-
veloped by Colwell (1974) and have been commonly used in
phylogenetic comparative analysis over the last decade (Fisher
et al. 2013; Cornwallis et al. 2017; Fristoe et al. 2017; Griesser
et al. 2017; Ringen et al. 2019; Firman et al. 2020; Martin
et al. 2020; Diamant et al. 2021). Both of Colwell's predict-
ability measures are calculated by putting observations into
data categories and using the Shannon information statistic,
also known as information entropy, to calculate uncertainty
across time and data categories. The third method is from spa-
tial and movement ecology, where some recent papers have
suggested using spectral entropy to calculate the periodicity
of time series data (Zaccarelli et al. 2013; Riotte-Lambert and
Matthiopoulos 2020; Morrison et al. 2021). We chose these
three methods because of their popularity (for Colwell's mea-
surements) and because of their potential methodological ben-
efits (for normalised spectral entropy). As all methods apply
the concept of information entropy to measure the degree of
uncertainty, we first explain the concept of entropy, then de-
scribe the three methods in more detail, and finally use two
example time series to illustrate the similarities and differ-
ences between each method.

2.1 | The Concept of Entropy in
Information Theory

Entropy is one of the fundamental concepts in thermodynamics
and it measures the degree of uncertainty. The most commonly
used formulation was developed by Shannon (1948),

HX)= Y. = pin(p,) /In(s) )

where X is the data, i is the index in observation categories, p is
the proportion of observations belonging to the focal category,
and s is the number of categories. H(X) is called normalised in-
formation entropy in information theory, and normalisation is
added to facilitate comparison between different data. H(X) is
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maximised when all p have equal values, and minimised when
one pis 1 and all others are 0. In other words, larger values of H
indicate greater uncertainty.

While all three methods use the same formulation of H(X), the
key difference between them is how categories are defined. For
fixed and dynamic binning measures of Colwell's predictability,
the continuous observational data are ‘binned’ or grouped into
discrete quantity categories, so that two observed X values with
small differences are viewed as being in the same category. In
contrast, normalised spectral entropy uses frequencies of waves
to define categories.

2.2 | Method 1: Colwell's Predictability With Fixed
Binning

Colwell's predictability focuses on the yearly cycles by processing
data from the same time of the year (e.g., month) into categories
that capture different levels of intensity in the variable of interest
(e.g., 1°C bins in mean temperature). Here, X (columns) refers to
the time in the cycle and Y (rows) refers to the number of sam-
pled cycles in which a given month exhibited environmental val-
ues of a certain level. We call this table the processed occurrence
table and visualise it in the form of heat maps in Figure 1. For
example, if we have monthly temperature data for 5years with 60
observations, the processed occurrence table would have 12 col-
umns, each represents a month (X) and a number of rows, each
stands for a data category (Y). The sum of each column is there-
fore 5 (i.e., 5 observations per month). Subsequently, Colwell's
predictability is defined as,

Peotwen =1 — (H(XY) — H(X)) 2

where H(X) is the uncertainty over time to account for miss-
ing observations, H(XY) is the uncertainty over all cells in the
table. Note that there is a slight difference in Equation (2) versus
Colwell's original paper, because we have already included In(s)
within the entropy function.

Importantly, the final component is how each data category is
defined in the processed occurrence table. For instance, one
could define it as 1°C, or any arbitrary value, because they are
interested in a certain thermal resolution of temperature time se-
ries data. For any given time series, we could maintain the same
resolution of the data because the bin width of each data cate-
gory does not change with the range of the input data. We refer
to this binning method as ‘fixed binning method’. The rationale
behind Colwell's method was to provide a generic way to cal-
culate predictability for both continuous and discrete variables,
where the latter one cannot be treated with traditional time se-
ries analysis (i.e., nominal measures; Siegel 1956; Stevens 1958;
Colwell 1974).

We generated two example time series to illustrate how methods
vary (Figure 1a). Time series 1 was generated from a sine wave
of yearly cycle with the addition of some white noise. The sine
wave fluctuates between 1 and —1, while the white noise ranges
between 0.25 and —0.25. Each datapoint represents a monthly
average temperature for a 5-year period. For simplicity, we did

not shift this temperature time series to more common values
(e.g., 15°C) because shifting does not change the results. Time
series 2 is time series 1 multiplied by 5 so the only difference be-
tween them is the scale of variation. The processed occurrence
table for both time series, with 1°C width for each data category
on the rows, ranging from —6°C to +6°C is given in Figure 1.
This shows that time series 1 is concentrated on a few rows,
whereas time series 2 is much more spread out. Consequently,
Colwell's predictability with fixed binning method results in
time series 1 being more predictable than time series 2 (0.924
vs. 0.803).

2.3 | Method 2: Colwell's Predictability With
Dynamic Binning

An alternative approach for creating data categories is keeping
the number of valid rows constant between input data, and let-
ting the bin widths vary. That is, the width of a data category
changes with the difference of maximal and minimal obser-
vation in a time series. The benefit of this approach is that it
provides a cleaner measure of periodicity, that is independent of
the average or variability (SD). The cost of this approach is that
the calculation unit is not consistent across the entire globe—a
difference in one degree Celsius will be a bigger jump between
categories when the range of the input time series is smaller.
Historically, the binning details have been suggested to cause
differences in Colwell's indices and were discussed in the con-
text of fix-state and scaled-state calculation (Beissinger 1986;
Gan et al. 1991; Beissinger and Gibbs 1993). An example is
shown in Figure 1c, where both time series are processed into
tables of 25 rows. We call this method ‘dynamic binning’ be-
cause the definition of a single bin (i.e., data category) is dy-
namic and depends on the scale of the input data. Because data
are compressed at the same level, both example time series have
equal predictabilities of 0.691.

2.4 | Fundamental Components of Colwell's
Predictability

As pointed out in Colwell's original paper (Colwell 1974),
Colwell's predictability contains two fundamental compo-
nents: constancy and contingency, where each can be re-
ferred to as a predictability measure. Constancy focuses on
whether observations are always in the same data category,
C=1-H(Y), where H(Y) is the uncertainty over data cate-
gories. On the other hand, contingency focuses on whether
observations from the same month of different years are
in the same data category while being distinct from other
months, M = H(X)+ H(Y) — H(XY). Constancy and contin-
gency have been analysed extensively in movement ecology
because of their distinctive meaning, where contingency
in particular has been closely linked to temporal structure
and spectral entropy (see a recent review in Riotte-Lambert
and Matthiopoulos (2020)). Despite this, most comparative
studies have focused on the composite predictability metric,
rather than examining individual components. We will ex-
amine these distinctions in Sections 3.1.2 and 5.1 and in the
Supporting Information S1: Section 2.2.
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FIGURE1 | Three different types of predictabilities estimated for two example time series. (a) The raw data from the two time series. Time series

1 is generated through a sine wave plus random numbers bounded between —0.25 and 0.25. Time series 2 is time series 1 multiplied by a factor of 5.
(b-d) The processed data, or intermediate step, used in calculating three types of predictability. We set the bin width to 1 for fixed binning, and set

25 categories for dynamic binning. Brighter colour indicates there is a higher occurrence.
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2.5 | Method 3: Normalised Spectral Entropy

Normalised spectral entropy is calculated from a Fourier spec-
trum produced by discrete Fourier transformation compared
to the occurrence table in Colwell's methods. Discrete Fourier
transformation is one of the standard methods in time series
analysis (Shumway et al. 2000); it uses a discrete set of sine waves
to describe the input data set: if the data are very noisy, such as
white noise, then the resulting spectrum would have roughly
equal amplitudes across all frequencies; if the data is very pe-
riodic, then the spectrum would have a few amplitude peaks
and almost zero amplitudes in other frequencies. Normalised
spectral entropy analyses the distribution of these amplitudes
and treats each frequency as a category to calculate uncertainty
(histogram in Figure 1d). Specifically,

* —p,In(p;

PSchntropy =1-HX)=1- Zl lrllj(ls) (pl) @
where X is the Fourier spectrum, p; is the amplitude of focal fre-
quency divided by the sum of amplitudes, and s is the number of
frequencies in the spectrum (equal to half the length of the time se-
ries; Zaccarelli et al. (2013)). Thus, predictability with normalised
spectral entropy is quantifying the periodicity of input data: a
white noise would produce a low predictability, and a pure sine
wave would produce the highest predictability. See Supporting
Information S1: Section 7.1 for graphic examples.

Normalised spectral entropy focuses on the uncertainty among
frequencies, which is more independent of the variance of the data
(compared to Method 2). One potential benefit of this is that spec-
tral entropy looks into autocorrelation across multiple timescales
such as days, months and years, while Colwell's calculation focuses
on the correlation between years (12months lag). In other words,
the periodicity in multiple-year events like El Nino and La Nina
can be captured by spectral entropy but not Colwell's measures.
Another potential benefit is almost no information is lost during
the transformation process in spectral entropy (except the phase of
each sine wave) and it could be more sensitive to capture temporal
signals (Stearns 1981; Beissinger and Gibbs 1993). Nevertheless,
the downside of spectral entropy is the same as Method 2 that the
calculation unit is not constant and varies with the scale of input
data, and so far it has not been used in phylogenetic comparative
analysis. Going back to our two example time series (Figure 1d),
because the amplitude scales up evenly across all frequencies (at a
factor of squared scaling so that time series 2 has 25 times larger
amplitudes than time series 1), the normalised spectral entropy is
identical between both time series: 0.796. We provide additional
discussion between each method and the source code of Figure 1
in Supporting Information S1: Section 7.

3 | Using the Measures of Predictability

Next, we estimated the three measures of predictability for tem-
perature and precipitation across the Globe from a meteorologi-
cal dataset to ask: do certain places on earth consistently have a
higher degree of predictability in temperature (Section 3.1); and
how much does each climatic quantity correlate to each other in
(Section 3.2).

3.1 | How Does Climatic Predictability Vary Across
the World?

3.1.1 | Data Collection

We collected climatic data from the climate research unit
(CRUTS v4.06; Harris et al. (2020)), by taking monthly mea-
surements of temperature and precipitation (rainfall). We
collected the data from January 1901 to December 2020,
at a spatial resolution of 0.5°x0.5° longitude-latitude grids
(~55.5km north-to-south, east-to-west varies with latitude).
For each grid, we processed the climatic data into average, SD
and the three predictabilities over the 1440 months (N = 67,420
grids).

3.1.2 | The Global Pattern

The three methods for measuring temperature predictabil-
ity generated different global patterns (Figure 2a-c). Colwell's
predictability with fixed binning (Method 1) is highest around
the equator, but the other two methods (2&3) find that predict-
ability is lowest in those regions (Figure 2a vs. Figure 2b,c).
Because Method 1 is influenced by variability and periodicity,
higher predictability measures can occur in less seasonal places
because they show less variation. In contrast, Colwell's predict-
ability with dynamic binning and normalised spectral entropy
is focused on measuring periodicity (Methods 2 and 3). This is
greatest in areas which show more consistent seasonality, which
is in more temperate areas where there are warmer summers
and colder winters. The opposite is also true for tropical places
where temperature is less periodic because of less seasonality
(see Supporting Information S1: Section 2.1 and Figure S1 for
the quantitative correlation results).

The three methods applied to precipitation data also showed dif-
ferent global patterns (Figure 2d-f). All methods suggest rainfall
is highly predictable in the Amazon rainforest, Arabian Desert
and some regions of the Himalayas, but they disagree regard-
ing Africa, Northern America and Eurasia. This inconsistency
is likely because Colwell's predictability uses log-2-based bin-
ning in both Methods 1 and 2 to reduce the correlation between
SD and mean, whereas Method 3 does not (Colwell 1974). We
also provide the global maps for averages and SDs of tempera-
ture and precipitation in Figure 3 for comparison. In Supporting
Information S1: Section 2.2, we provide further analysis on the
global patterns of constancy and contingency, the two finer
components of Colwell's predictability. We found that the differ-
ences between Methods 1 and 2 versus Method 3 are mostly due
to constancy (Figures S2 and S3). In contrast, there is great simi-
larity between the patterns of contingency and spectral entropy,
but the quantities still vary with binning methods (Figures S2
and S3).

3.1.3 | Conclusion 1: Different Predictabilities Are
Quantifying Different Properties

With temperature, we found that Colwell's predictability with
fixed binning (Method 1) creates contrastingly different results
than the other two methods, which appear to be because it is
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Temperature predictabilities

Precipitation predictabilities
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FIGURE 2 | Measuring climate predictability on a global scale. (a—c) The three predictabilities for temperature. Methodological details for bin-
ning in Colwell's predictability are described in Figure 1. (d-f) The three predictabilities for precipitation. Following previous literature and Colwell's
original paper, the bins for precipitation data when calculating Colwell's predictability are on a log2 scale. Normalised spectral entropy, on the other

hand, does not have this log2 transformation pre-process (i.e., calculation process is identical for temperature and precipitation in entropy method).

For temperature, Method 1 (a: Fixed binning) shows higher predictabilities in tropical, seasonal places, whereas Methods 2 and 3 (b and c) show

higher predictabilities in temperate, seasonal places. For precipitation, the different methods disagree with each other on where predictability is high

or low (d-f).

capturing both the repeatability of oscillations and the over-
all tendency to oscillate at the same time. With precipitation,
normalised spectral entropy had the opposite correlation to
Colwell's predictabilities.

3.2 | Do Different Climatic Quantities Correlate at
the Scale of Species Ranges?

With the knowledge that methods in quantifying predict-
ability can generate a variety of global patterns, we analysed
the correlation between predictability measures as well as
mean and SD of climatic variables. This is a crucial step be-
fore moving to phylogenetic regression analysis; because
high correlation leads to problems of collinearity in model
interpretation.

3.2.1 | Data Collection: A Reanalysis

We used a global bird data set published in 2017 as a case study
to test the usefulness of different measures of environmen-
tal variables (Cornwallis et al. 2017). The data contains 286
bird species for which there were estimates of multiple pater-
nity, climatic variation and the breeding system (cooperative
breeder or not). We re-extracted climate data for the study
sites for each species from the global CRU dataset presented
in the previous section. For simplicity, we assume species
abundance is uniform within study sites, and the average was
taken with equal weighting for each spatial grid at the unit
of months. We examined how each method of predictability
correlated with the average and SD. To increase the normality
of data, we applied transformations to some of the variables
before the analysis (also applied to Figure S2 for consistency).
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FIGURE3 | Climate averages and SDs across the globe. (a) Average temperature. (b) Temperature SD. (c) Average precipitation. (d) Precipitation
SD. All data are averaged across 1901-2020, and transformations were made to improve normality.

Supporting Information S1: Section 6 contains the Q-Q plots
for various common transformations to show the transforma-
tions we applied are appropriate.

3.2.2 | Correlation Between Predictabilities
and Other Quantities

We found very strong correlations between all temperature
predictabilities, the average and the SD (Figure 4a-f). In
highly seasonal regions (low average and high SD of tempera-
ture), Colwell's predictability with fixed binning (Method 1)
has low predictability values, while the other two methods
have high predictability values compared to less seasonal re-
gions. These findings are consistent with the global pattern
in Figure S4. Taken together, we found that predictabilities
have overlapping properties with the average and the SD,
providing limited extra information (see Section 5.3 for more
explanation).

There were much weaker correlations for the precipita-
tion predictability measures and the average and the SD
(Figure 4g-1). The correlation coefficients were lower in the
precipitation analysis than in the temperature analysis, which
is consistent with the global analysis (Figure S4). However,
unlike the global dataset (Figure S4) where the three predict-
abilities had inconsistent relationships with the average and
SD of precipitation, we found positive correlations between
all precipitation predictabilities in the cooperative breeding
bird dataset. These results suggest that the predictabilities
are not independent of the average or the SD of precipitation
and highlight that the relationship in precipitation can vary
across datasets that include different regions. In Supporting
Information S1: Section 2.4, we analysed the correlation be-
tween means and SDs and found even stronger correlations

than between predictabilities (Figure S5). We also conducted
a similar analysis on precipitation coefficient of variation, an
alternative variance measure (Figure S6). Together, these re-
sults highlight the potential problem of including both aver-
ages and SDs as independent covariates in regression models
(due to collinearity) and justify the use of phylogenetic prin-
cipal component analysis (phyloPCA) in the original paper as
one common practice.

3.2.3 | Conclusion 2: Predictability Metrics Are Highly
Correlated With Other Climatic Quantities

We found strong correlations between the average and the SD
of climatic variables. Similarly, we found correlations between
predictabilities and other quantities, regardless of the calcula-
tion method. However, comparing patterns in the global and
regional datasets showed that only results with temperature
predictability (Figure 4a—f, Figure S4a-f) were consistent,
with precipitation results varying across datasets (Figure 4g-1;
Figure S4g-1). This result highlights that climatic quantities
are correlated, but that the direction of correlation is dataset
dependent.

4 | Predictability in Phylogenetic Regression
Analyses

The correlations between climatic quantities have been
pointed out by many meteorologists and biologists (Walker and
Cocks 1991; Kriticos et al. 2014; Dinnage 2023). This raises the
question of how much extra statistical explanatory power is
provided by including multiple climatic quantities in an anal-
ysis? We used phylogenetic logistic regression models to anal-
yse the presence of cooperative breeding (response variable)
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FIGURE4 | Correlations between predictabilities and other climatic quantities across species. Against the (a-c) average temperature, (d-f) stan-
dard deviation of temperature, (g-i) average precipitation and (j-1) standard deviation of precipitation. In each panel, we report Pearson's correlation
coefficient, p, with 95% confidence interval and p-value.

in relation to climatic variation (explanatory variables). We 4.1 | Do Predictability and SD Measures Increase
accounted for the non-independence of data that arises due to ~ the Explanatory Power of Regression Models
species phylogenetic relationships by modelling the phyloge- ~ (Without phyloPCA)?

netic correlation between residuals (Felsenstein 1985; Harvey

and Pagel 1991). 4.1.1 | Statistical Methods and Interpretations

In Section 4.1, we sequentially added raw climatic quantities ~ We used phylogenetic regressions to directly compare models with
as explanatory variables to quantify changes in explanatory different predictors, using model selection procedures to evaluate
power in phylogenetic regression models. In Section 4.2, we  competing models, and estimate the percentage of variance ex-
used the same approach, but included principal component plained by different predictors (partial R?). Specifically, we used
scores as explanatory variables, which were constructed using maximum penalised likelihood estimation, a well-established al-
different combinations of climatic quantities in a phylogenetic gorithm in frequentist statistics, to find the best model (Anderson
principal components analysis. These two different methods and Blair 1982; Tung Ho and Ané 2014). To evaluate model fitting,

are both commonly used and each offers different advantages: we calculated the Akaike information criteria (AIC) and overall
biological interpretation can be clearer with separate esti- R? (Rlzik; Ives (2018)). AIC balances model fit and model complexity
mates of each explanatory variable in multiple regressions,  with lower AIC values indicating favoured models, while higher
but results may be unreliable due to high multicollinearity, R? indicates that more variance in the input data is explained.
and vice versa for principal components. In addition to these

two established methods, we also carried out a series of ran- To examine the extent of multicollinearity in each regression
dom forest analyses in Supporting Information S1: Section 5, model, we used variance inflation factors (VIF) from gener-

but these results should be interpreted with caution as there alised linear models (GLM) with binary error distributions
is no established way to include phylogenetic information in (logistic regression) that were equivalent to our phylogenetic
such analyses. models (because there is no readily available VIF tool for
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phylogenetic logistic regressions). VIF gives an indication as to
how much the standard error in the estimated coefficient is in-
flated (Miles 2014). If a VIF is 4, it means the standard error is
2 times (square root of 4) larger than if that predictor had no
correlation with other predictors. The degree of multicollinear-
ity is subjective. Here we use the term moderate collinearity to
describe cases where the VIF ranges between 2 and 4, and high
collinearity where the VIF is larger than 4. We carried out the
analyses using R v4.3.0, phylolm package v2.6.2, rr2 package
v1.1.0 and car package v3.1.2 (Tung Ho and Ané 2014; Fox and
Weisberg 2019; Ives 2018; R Core Team 2024).

Our first approach was to analyse the data with just the averages
of temperature and precipitation, and then examine the extent to
which our model is improved by adding standard deviations and
predictabilities sequentially. To do this, we analysed five models:
the mean model where cooperative breeding was predicted by
average temperature and average precipitation (2 predictors); the
SD model where SDs were added to the mean model (4 predic-
tors); the fixed predictability model where Colwell's predict-
ability with fixed binning was added to model 2 (6 predictors); the
dynamic predictability model where Colwell's predictability
with dynamic binning was added to model 2 (6 predictors); and
the entropy predictability model where normalised spectral
entropy was added to the SD model (6 predictors). We discuss the
limitation of this model design in Section 5.3.

4.1.2 | Results

We found that adding predictability to regression models that al-
ready include average and SD increased AIC and reduced over-
all R? values (SD model compared to predictability models in
Table 1). These results support our previous correlation analyses

(Figure 4) and suggest that including predictability does not
increase the power to explain cooperative breeding (over that
provided by the mean). We also found that adding SDs improved
the model, but only by a small AAIC (slightly greater than 2) and
only by a 3% increase to R2. This small improvement aligns with
the correlation analysis of averages and SDs (Figure S5). Thus,
there is a limited gain in explaining cooperative breeding from
adding variability (SD) measurements to a model that already
contains the mean. The summaries of all five regression mod-
els are in Supporting Information S1: Section 3.1. We also per-
formed an alternative analysis, replacing precipitation SD with
the coefficient of variation (CV) in Supporting Information S1:
Section 3.3, because CV is less correlated with average precip-
itation than SD. We found adding CV also leads to a marginal
improvement but adding predictability on top of CV leads to
mixed results.

Multicollinearity was moderate to strong in all models apart
from the mean model (Table 2). In particular, the SD model had
moderate levels of collinearity between all predictors; the fixed
predictability model had four out of six predictors with strong
collinearities, and the dynamic and entropy predictability mod-
els both had one predictor with strong collinearity. These results
suggest that the evaluated model estimates between climate and
cooperative breeding, especially all predictability models, may
be jeopardised by including multiple correlated climate sum-
mary statistics.

4.1.3 | Robustness Check Through Variable
Importance Analysis

Our above approach examined the explanatory power of grad-
ually adding in higher moments of the climatic variables (first

TABLE 1 | Summary of model fitting for each phylogenetic regression model analysing the cooperative breeding bird data from Cornwallis

et al. (2017).

Predictability Predictability Predictability
Mean Model SD Model (fixed) Model (dynamic) Model (entropy) Model
Model type (2 predictors) (4 predictors) (6 predictors) (6 predictors) (6 predictors)
AIC 192.321 190.065 200.722 204.988 202.598
Overall R? 0.348 0.378 0.346 0.325 0.337
TABLE 2 | Variance inflation factor analysis of each phylogenetic regression model.
Mean Predictability Predictability Predictability
Predictor Model SD Model (fixed) (dynamic) (entropy)
Temperature average 1.221 2.441 2.691 2.969 3.07
Precipitation average 1.221 3.211 7.113 3.251 3.367
Temperature SD NA 2.98 5.917 4.754 5.338
Precipitation SD NA 3.271 6.014 3.399 3.715
Temperature NA NA 6.453 2.439 3.202
predictability
Precipitation NA NA 2.321 1.489 1.789
predictability
9of 14

95U8017 SUOWIWIOD BA1TE8.1D) 9{cfedl|dde au Ag peusenob ke s VO ‘88N 0 anl o) Akeiq 18Ul UO AS|IA LD (SUORIPUOD-PUE-SWLBILOO"AB| 1M Aled U1 |Uo//:Sdny) SUONIPUOD pue swie | 8y} 89S *[5202/0T/ET] Uo Akeiqiauliuo A8|IM ‘256628 Afeidi AISPAIUN ALISHIAINN ANNT A 80TOL GRB/TTTT OT/I0P/WO0 A8 |1 ARiq1 Ul juo//SANY Wo1) pepeo|umod '8 'SZ0Z ‘8E2899KT



SD and then predictability). As an alternative, we performed a
relative variable importance analysis. In this approach, a series
of regression models are built with each possible combination of
climatic quantities, and the differences in the model AICs are
used to calculate the sum of the weights for each variable. The
advantage of this approach is that there are no prior assump-
tions about the hierarchy between climatic quantities (we don't
start with the mean and work up to SD and then predictability).
However, the disadvantage is that multicollinearity could be
high in many models, as shown in Table 2.

We repeated three equivalent relative variable importance anal-
yses, one for each predictability, and found the most important
climatic quantities are very volatile (Supporting Information S1:
Section 3.2). Averages and SDs are the most important factors
in dynamic binning and spectral entropy, but predictabilities
are the most important factors in the fixed binning method
(Tables S2-S4). Furthermore, many of the weights are similar
to each other, probably due to multicollinearity, which makes
it difficult to estimate the importance of climatic quantities.
Overall, it is hard to disentangle from these analyses which is
the ‘best’ single variable to include in phylogenetic multiple re-
gression models.

4.2 | Does Including Predictabilities

and SDs in Phylogenetic PCA Analyses Increase
the Explanatory Power of Principal Components in
Regression Models?

4.2.1 | Statistical Methods and Interpretations

We analysed the same dataset for cooperative breeding in birds,
but with principal components (PCs) as explanatory variables.
We used phylogenetic principal component analysis (phyloPCA,;
phytools package v2.0; Revell (2024)) to find the best linear
combination of climatic quantities. Following previous work
(Cornwallis et al. 2017), we z-transformed all quantities to stan-
dardise their scales and avoid biased estimations on PC weights
(mean=0 and SD=1). We used the first two PCs as explana-
tory variables in phylogenetic logistic regression models: each
PC axis captures a distinct aspect of climatic data, with PC1
representing the greatest variance and PC2 the next. As in the
previous section, we analysed five regression models where PC1
and PC2 were generated with the same sets of explanatory vari-
ables: the averages, the averages and SDs and the three different
predictability estimates. We call these models the mean-PCA
model, SD-PCA model and predictability-PCA models. We
ask if the PCs with more quantities better explain the occurrence

of cooperative breeding in birds, by comparing the model AICs
and overall R%.

4.2.2 | Results

We found that adding predictabilities to PCAs resulted in a
marginally better or worse regression model fits (SD-PCA
model compared to predictability-PCA models in Table 3). Only
the fixed predictability-PCA model had a reduced AIC and in-
creased overall R?, whereas the dynamic predictability-PCA
model is much worse than all other models. This result high-
lights that the binning method can alter results and supports
conclusion 3 that adding predictabilities to the analysis does
not improve models. Furthermore, by comparing the mean-
PCA model and SD-PCA model, we found that AIC was only
marginally significantly reduced and the R? was only improved
by 1%. Thus, adding SD had a very limited effect on explaining
cooperative breeding (see Figure S7 for the PC composition in
biplots).

4.2.3 | Conclusion 3: Adding Some Predictability
Measures Can Reduce Model Fit; Adding SDs Can Lead
to Small Improvements

When examining the occurrence of cooperative breeding, we
found that relative to a model that already contained the mean,
adding predictabilities does not improve the model in most cases
and can make it worse; and SDs only slightly improved models
and increased multicollinearity in multiple regression analyses.
Together, the results here suggest there is a high overlap in the
amount of variation explained in cooperative breeding by mean,
SD and predictability, which agrees with the correlation analy-
sis in conclusion 2. In line with the findings above, our random
forest analysis suggests that all climatic quantities have similar
importance and are clustered into a small number of groups
(Supporting Information S1: Section 5.3; Figure S10). These re-
sults further indicate the difficulty in discerning the single most
important climatic property that associates with the evolution of
cooperative breeding.

5 | Discussion

We found that predictability can be measured in different ways,
but that these were correlated with other climate variables; and
so did not significantly increase the explanatory power of anal-
yses. First, different predictability measures give different and

TABLE 3 | Summary of model fitting for all PCA-processed regression models analysing the cooperative breeding bird data from Cornwallis

et al. (2017).

Predictability-
Mean-PCA SD-PCA Predictability- PCA (dynamic) Predictability-PCA
Model Model PCA (fixed) Model Model (entropy) Model
Model type (2 predictors) (2 predictors) (2 predictors) (2 predictors) (2 predictors)
AIC 192.377 190.368 189.459 209.132 191.978
Overall R? 0.348 0.357 0.362 0.265 0.350
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potentially opposite results (Figure 2). This finding highlights
the importance of considering binning methods (fixed, dynamic,
or other ways) when interpreting results, an issue that has been
largely neglected in the application of Colwell's metrics. Second,
the average, SD and predictabilities were all highly correlated
for temperature and to a lesser extent for precipitation (Figure 4,
Figure S4), indicating potential issues in interpreting statistical
models with multiple climatic quantities. Third, there is limited
gain from adding multiple climatic quantities to phylogenetic
multiple regression or PC analyses.

5.1 | Different Methodologies of Predictability
Quantify Different Things

We found that different measures of predictability can give very
different results, and that the best measure to use could depend
upon the aims of the study. Colwell's predictability with fixed
binning (Method 1) suggests that more tropical climates are more
predictable, because they show smaller variation. Colwell's pre-
dictability with dynamic binning and normalised spectral en-
tropy (Method 2 and 3) suggest that more temperate climates are
more predictable because they show stronger seasonality (larger
variation, but seasonally predictable). The predictability termi-
nology can therefore be confusing, and the choice of method
will likely depend on whether periodicity, variability or both are
important to investigate. In particular, Colwell's predictability
with dynamic binning is measuring periodicity across years,
and normalised spectral entropy is measuring periodicity across
a broad range of time scales (Figure 1lc,d). Consequently, it
might be simpler to just refer to these two metrics as ‘periodicity’
or ‘cycle repeatability’. On the contrary, Colwell's predictability
with fixed binning is measuring periodicity rescaled by variabil-
ity (Figure 1b), thus could be called as ‘rescaled periodicity’ or
‘rescaled cycle repeatability’.

Continuing on the difference between fixed and dynamic bin-
ning, past literature from the 1980s and 1990s has pointed out
Colwell's predictability is sensitive to how data is categorised
(Stearns 1981; Beissinger 1986; Gan et al. 1991; Beissinger and
Gibbs 1993). Among this literature, Gan et al. (1991) created two
binning methods that are very similar to ours, fixed-states and
scaled-states predictabilities. However, there are key differences:
our fixed binning uses uniform bin widths, unlike their arbi-
trary ranges; our dynamic binning creates a constant number
of bins based on the range of data, while theirs scales with the
mean. This difference, as well as the difference in sample size,
might lead to an opposite correlation being found between our
study and their study (Supporting Information S1: Section 2.3
vs. Beissinger and Gibbs (1993)). Our binning methods were
adopted from the original study (fixed; Cornwallis et al. 2017),
and the default method in the hydrostat package (dynamic).
Unfortunately, the binning method is not described in other
comparative studies analysing climatic quantities and biological
traits. Our finding aligns with previous literature, suggesting
this is a decisive detail when using Colwell's predictability and
should be carefully treated to avoid accidentally making mis-
leading predictability measures.

Colwell's method can also be broken down into two compo-
nents that capture different aspects of predictability: constancy

and contingency. This examines how environments can be
predictable because they never change (high constancy), or be-
cause they are easy to anticipate (high contingency; Supporting
Information S1: Section 2.2, Figure S3). In particular, we found
contingencies of both binning methods match well with nor-
malised spectral entropy, suggesting they might have similar bi-
ological interpretations. The utility of different measures could
also depend upon the geographical area examined. For example,
if examining tropical organisms, then constancy could be the
most useful metric because it captures differences among rela-
tively stable habitats (low seasonality). In contrast, if temperate
organisms are examined, then contingency could be more use-
ful because it captures autocorrelations among relatively vari-
able habitats (high seasonality). Finally, if examining across the
entire globe, then it could be useful to examine predictability
due to both constancy and contingency.

5.2 | Predictability for Real Organisms

An important biological question is: what is predictability from
an organism's perspective? It is likely that predictability is a
species-explicit and time-explicit property as organisms observe
their surrounding environments in different durations or differ-
ent periods of the same time frame, and as different organisms
could live on drastically different time scales with different life
histories (Salguero-Gomez et al. 2016; Van de Walle et al. 2023).
Moreover, it is possible that meteorological measures of predict-
ability relate very poorly to an organism's ability to predict the
environment because of the time resolution of these climatic
data. At one extreme, consider a case where the meteorological
data suggest that environmental conditions show low predict-
ability or periodicity, but the organisms can use finer environ-
mental cues to predict future environmental conditions. In this
case, the environment would be highly predictable to that or-
ganism (Botero et al. 2015). At the other extreme, if organisms
cannot predict environmental variation on the scale of their life-
time, the environment could be less predictable than suggested
by meteorological measures. Altogether, the term’ predictability’
in terms of how it matters, is a term that implies intentional-
ity from an organismal perspective—this can be something
very different from the entropy measures of periodicity or other
aspects of predictability (Ghoul et al. 2014). Empirical studies
could address this by carefully considering the temporal and
spatial resolutions that are biologically meaningful for their
focal species at the earliest stages of study design.

5.3 | Explanatory Power of Climatic Quantities

Our results raise the issue of how much additional explanatory
power different quantities of temperature and precipitation
may add to phylogenetic studies. The high correlations between
means, SDs and predictabilities we found coincide with a recent
study on a similar global meteorological database (WorldClim),
which showed that 5 synthetic variables are sufficient to cap-
ture most of the variation in the entire dataset of 19 variables
(Dinnage 2023). Similarly, these correlations have been no-
ticed for a long time in the biogeography and other literature
(Birks 1996; Heikkinen 1996; Guisan and Zimmermann 2000;
Pendergrass et al. 2017; Harp and Horton 2023). Indeed, high
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levels of interdependence between explanatory variables affect
the interpretability of multiple regression models and do not
violate the assumptions behind multiple regression (Morrissey
and Ruxton 2018). Nevertheless, in our single case study with re-
analysing published dataset, we found VIF coefficients quickly
increase with including more climatic quantities. These results
suggest using multiple regression to figure out the key contrib-
uting climatic factor to biological adaptation can be challenging.

It is important to note that we are not discouraging the use of
predictability, but rather highlighting the complex nature of dif-
ferent predictability measures, and the potential gaps between
predictability and biological processes. In our statistical analyses
(Section 4), we employed the perspective that mean is a more fun-
damental property than SD, and both are more fundamental than
predictability. This perspective was derived from the moments of
distribution (as well as the ease of measurement). Another reason
is the mean is less versatile than variability, which can be mea-
sured in SD, CV and variance; and predictability is an even more
versatile metric (Figure 2). Indeed, if a biologist can justify that a
certain type of predictability should be the primary contributor
to a biological process, they might take a different plan to set up
the statistical models and reach a slightly different conclusion.
However, changing the sequence of adding different properties
of a single climatic variable would not change the conclusion:
they have a high overlap to which they can explain the variance
of cooperative breeding (Conclusion 3). In addition, although
our analyses employed three distinct entropy metrics and found
these entropies are insufficient in adding more information to the
statistical analyses, it is possible that other entropy metrics would
work, or the ones we used can be important in other datasets.

5.4 | How Should We Move Forward?

The most useful methodology can depend on the hypothesis being
tested, or if an analysis is more exploratory. With a specific hy-
pothesis, we suggest constructing phylogenetic regression mod-
els with a minimal number of explanatory variables, and then
compare the hypothesis model, which contains the variable(s) of
interest, against alternative models. For example, if a study aims
to test whether the periodicity effects of yearly environmental cy-
cles are fundamental for a behavioural strategy, then the variable
of interest could be Colwell's predictabilities (including constancy
and contingency; Section 5.1). In contrast, if a macroecology
study is designed to test the climatic variability hypothesis, then
the variable of interest could be the SD or maximal difference in
temperature (Janzen 1967; Quintero and Wiens 2013; Gutiérrez-
Pesquera et al. 2016; Polato et al. 2018; Chiono and Paul 2023). In
addition, if variation in precipitation is more biologically relevant
than temperature variability for cooperative breeding, then com-
paring models that include only precipitation SD may help clar-
ify its independent effect (Rubenstein and Lovette 2007; Jetz and
Rubenstein 2011; Cornwallis et al. 2017). Alternatively, if a study
aims to test the temporal scale effects, such as diurnal thermal
range and seasonal thermal range being hypothesised to have op-
posite effects on natural selection—because the duration of envi-
ronmental variation can change the ecological dynamics—then
different aspects of thermal variability could be crucial (Chan
et al. 2016; Liu et al. 2021). If the regression model with the vari-
able(s) of interest is significantly better than alternative models,

which should have similar numbers of comparable explanatory
variables, then it would support the focal hypothesis.

If there is no specific hypothesis to test, regression models with
PCs could be a better option; though it is important to be cau-
tious about the wording when referring to PCs. Phylogenetic
PCA retains great interpretability even when the model con-
tains numerous climatic quantities (Botero et al. 2014; Fristoe
et al. 2017; Griesser et al. 2017; Firman et al. 2020). For in-
stance, it could tell how much variance is explained by each
PC, and with acknowledging the background assumptions, one
could use the PCA loadings to figure out the key factors (Chong
et al. 2018). However, one should be careful when inferring the
biological meaning of PCs and avoid labelling these PCs with
termslike ‘predictable environment’. This is because the process
of making PCs does not contain any biological insight. Another
way to deal with multicollinearity is through machine learning
tools, such as random forest models. These methods usually do
not make strong prior assumptions and are excellent in coping
with non-linear relationships, as well as correlations between
predictors (sometimes referred to as features). Nevertheless,
there are currently no available tools or established pipelines to
construct a phylogenetic random forest model. Our attempts in
Supporting Information S1: Section 5 used one categorical trait
to represent phylogenetic groups, while alternative methods
include but are not limited to the eigenvectors from the phylo-
genetic variance-covariance matrix and the PCs of the phyloge-
netic distance matrix. Yet, these methods all create additional
predictors. In conclusion, while giving explicit and clear defini-
tions of the meaning of predictable climatic conditions in each
study is the best way to facilitate communication, our findings
also highlight the need of developing techniques to examine
predictability from the organisms’ perspective.

Author Contributions

M.L. and S.A.W. conceived the ideas and designed methodology. M.L.
and C.K.C. collected the data. M.L. and L.B.-R. analysed the data. M.L.
and S.A.W. led the writing of the manuscript. All authors contributed
critically to the drafts and gave final approval for publication.

Acknowledgements

We thank, Samuel Gascoigne, Andrew Wood, James McCulloch, Juliet
Turner and Robert Colwell for their input at various stages of this proj-
ect; the European Research Council (834164; ML, L.B.-R. & S.A.W.);
NaturalMotion and Ministry of Education of Taiwan (M.L.); Knut and
Alice Wallenberg Foundation (2018.0138; C.K.C.).

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The codes and data used in this study are available at: https://doi.org/
10.5061/dryad.gtht76j02.

References

Anderson, J. A., and V. Blair. 1982. “Penalized Maximum Likelihood
Estimation in Logistic Regression and Discrimination.” Biometrika 69:
123-136.

12 of 14

Global Ecology and Biogeography, 2025

95U8017 SUOWIWIOD BA1TE8.1D) 9{cfedl|dde au Ag peusenob ke s VO ‘88N 0 anl o) Akeiq 18Ul UO AS|IA LD (SUORIPUOD-PUE-SWLBILOO"AB| 1M Aled U1 |Uo//:Sdny) SUONIPUOD pue swie | 8y} 89S *[5202/0T/ET] Uo Akeiqiauliuo A8|IM ‘256628 Afeidi AISPAIUN ALISHIAINN ANNT A 80TOL GRB/TTTT OT/I0P/WO0 A8 |1 ARiq1 Ul juo//SANY Wo1) pepeo|umod '8 'SZ0Z ‘8E2899KT


https://doi.org/10.5061/dryad.gtht76j02
https://doi.org/10.5061/dryad.gtht76j02

Aratjo, M. B., D. Alagador, M. Cabeza, D. Nogués-Bravo, and W.
Thuiller. 2011. “Climate Change Threatens European Conservation
Areas.” Ecology Letters 14: 484-492.

Barabds, G.,R. D'Andrea, and S. M. Stump. 2018. “Chesson'’s Coexistence
Theory.” Ecological Monographs 88: 277-303.

Bathiany, S., V. Dakos, M. Scheffer, and T. M. Lenton. 2018. “Climate
Models Predict Increasing Temperature Variability in Poor Countries.”
Science Advances 4: eaar5809.

Beissinger, S. 1986. “Demography, Environmental Uncertainty, and the
Evolution of Mate Desertion in the Snail Kite.” Ecology 67: 1445-1459.

Beissinger, S. R., and J. P. Gibbs. 1993. Are Variable Environments
Stochastic? A Review of Methods to Quantify Environmental
Predictability, 132-146. Springer.

Birks, H. J. B. 1996. “Statistical Approaches to Interpreting Diversity
Patterns in the Norwegian Mountain Flora.” Ecography 19: 332-340.

Botero, C. A., R. Dor, C. M. McCain, and R. J. Safran. 2014.
“Environmental Harshness Is Positively Correlated With Intraspecific
Divergence in Mammals and Birds.” Molecular Ecology 23: 259-268.

Botero, C. A., F. J. Weissing, J. Wright, and D. R. Rubenstein. 2015.
“Evolutionary Tipping Points in the Capacity to Adapt to Environmental
Change.” Proceedings of the National Academy of Sciences 112: 184-189.

Brumbach, B. H., A. J. Figueredo, and B. J. Ellis. 2009. “Effects of Harsh
and Unpredictable Environments in Adolescence on Development of
Life History Strategies.” Human Nature 20: 25-51.

Caro, S. M., A. S. Griffin, C. A. Hinde, and S. A. West. 2016.
“Unpredictable Environments Lead to the Evolution of Parental Neglect
in Birds.” Nature Communications 7: 10985.

Chan, W.-P,, I.-C. Chen, R. K. Colwell, W.-C. Liu, C.-y. Huang, and S.-
F. Shen. 2016. “Seasonal and Daily Climate Variation Have Opposite
Effects on Species Elevational Range Size.” Science 351: 1437-1439.

Charmantier, A., R. H. McCleery, L. R. Cole, C. Perrins, L. E. B. Kruuk,
and B. C. Sheldon. 2008. “Adaptive Phenotypic Plasticity in Response
to Climate Change in a Wild Bird Population.” Science 320: 800-803.

Chiono, A., and J. R. Paul. 2023. “The Climatic Variability Hypothesis
and Trade-Offs in Thermal Performance in Coastal and Inland
Populations of Mimulus guttatus.” Evolution 77: 870-880.

Chong, V. K., H. F. Fung, and J. R. Stinchcombe. 2018. “A Note
on Measuring Natural Selection on Principal Component Scores.”
Evolution Letters 2: 272-280.

Colwell, R. K. 1974. “Predictability, Constancy, and Contingency of
Periodic Phenomena.” Ecology 55: 1148-1153.

Cornwallis, C. K., C. A. Botero, D. R. Rubenstein, P. A. Downing, S. A.
West, and A. S. Griffin. 2017. “Cooperation Facilitates the Colonization
of Harsh Environments.” Nature Ecology & Evolution 1: 0057.

Diamant, E. S.,J.J. Falk, and D. R. Rubenstein. 2021. “Male-Like Female
Morphs in Hummingbirds: The Evolution of a Widespread Sex-Limited
Plumage Polymorphism.” Proceedings of the Royal Society B: Biological
Sciences 288:20203004.

Dinnage, R. 2023. “How Many Variables Does Wordclim Have, Really?
Generative A.I. Unravels the Intrinsic Dimension of Bioclimatic
Variables.” bioRxiv. 2023.2006.2012.544623.

Drake, J. M. 2005. “Population Effects of Increased Climate Variation.”
Proceedings of the Royal Society B: Biological Sciences 272: 1823-1827.

Felsenstein, J. 1985. “Phylogenies and the Comparative Method.”
American Naturalist 125: 1-15.

Firman, R. C., D. R. Rubenstein, J. M. Moran, K. C. Rowe, and B. A.
Buzatto. 2020. “Extreme and Variable Climatic Conditions Drive the
Evolution of Sociality in Australian Rodents.” Current Biology 30:
691-697.

Fisher, D. O., C. R. Dickman, M. E. Jones, and S. P. Blomberg. 2013.
“Sperm Competition Drives the Evolution of Suicidal Reproduction
in Mammals.” Proceedings of the National Academy of Sciences 110:
17910-17914.

Forrest, J. R. K., and J. D. Thomson. 2011. “An Examination of
Synchrony Between Insect Emergence and Flowering in Rocky
Mountain Meadows.” Ecological Monographs 81: 469-491.

Fox, J., and S. Weisberg. 2019. An R Companion to Applied Regression.
3rd ed. Sage.

Fristoe, T. S., A. N. Iwaniuk, and C. A. Botero. 2017. “Big Brains Stabilize
Populations and Facilitate Colonization of Variable Habitats in Birds.”
Nature Ecology & Evolution 1: 1706-1715.

Gan, K. C,, T. A. McMahon, and B. L. Finlayson. 1991. “Analysis of
Periodicity in Streamflow and Rainfall Data by Colwell's Indices.”
Journal of Hydrology 123: 105-118.

Ghoul, M., A. S. Griffin, and S. A. West. 2014. “Toward an Evolutionary
Definition of Cheating.” Evolution 68: 318-331.

Griesser, M., S. M. Drobniak, S. Nakagawa, and C. A. Botero. 2017.
“Family Living Sets the Stage for Cooperative Breeding and Ecological
Resilience in Birds.” PLoS Biology 15: €2000483.

Guisan, A., and N. E. Zimmermann. 2000. “Predictive Habitat
Distribution Models in Ecology.” Ecological Modelling 135: 147-186.

Gutiérrez-Pesquera, L. M., M. Tejedo, M. A. Olalla-Tarraga, H.
Duarte, A. Nicieza, and M. Solé. 2016. “Testing the Climate Variability
Hypothesis in Thermal Tolerance Limits of Tropical and Temperate
Tadpoles.” Journal of Biogeography 43: 1166-1178.

Harp, R. D., and D. E. Horton. 2023. “Observed Changes in Interannual
Precipitation Variability in the United States.” Geophysical Research
Letters 50: €2023GL104533.

Harris, 1., T. J. Osborn, P. Jones, and D. Lister. 2020. “Version 4 of
the CRU TS Monthly High-Resolution Gridded Multivariate Climate
Dataset.” Scientific Data 7: 1-18.

Harvey, P. H., and M. D. Pagel. 1991. The Comparative Method in
Evolutionary Biology. Oxford University Press.

Hawkins, B. A., and E. E. Porter. 2003. “Water-Energy Balance and
the Geographic Pattern of Species Richness of Western Palearctic
Butterflies.” Ecological Entomology 28: 678-686.

Heikkinen, R. K. 1996. “Predicting Patterns of Vascular Plant Species
Richness With Composite Variables: A Meso-Scale Study in Finnish
Lapland.” Vegetatio 126: 151-165.

Ives, A. R. 2018. “R2s for Correlated Data: Phylogenetic Models, LMMs,
and GLMMs.” Systematic Biology 68: 234-251.

Janzen, D. H. 1967. “Why Mountain Passes Are Higher in the Tropics.”
American Naturalist 101: 233-249.

Jetz, W., and D. R. Rubenstein. 2011. “Environmental Uncertainty and
the Global Biogeography of Cooperative Breeding in Birds.” Current
Biology 21: 72-78.

Koenig, W. D., and J. M. H. Knops. 2000. “Patterns of Annual Seed
Production by Northern Hemisphere Trees: A Global Perspective.”
American Naturalist 155: 59-69.

Kriticos, D. J., V. Jarosik, and N. Ota. 2014. “Extending the Suite of
Bioclim Variables: A Proposed Registry System and Case Study Using
Principal Components Analysis.” Methods in Ecology and Evolution 5:
956-960.

Lawing, A. M., and P. D. Polly. 2011. “Pleistocene Climate, Phylogeny,
and Climate Envelope Models: An Integrative Approach to Better
Understand Species’ Response to Climate Change.” PLoS One 6: €28554.

Liu, M., D. R. Rubenstein, S. A. Cheong, and S.-F. Shen. 2021.
“Antagonistic Effects of Long- and Short-Term Environmental Variation

13 of 14

95U8017 SUOWIWIOD BA1TE8.1D) 9{cfedl|dde au Ag peusenob ke s VO ‘88N 0 anl o) Akeiq 18Ul UO AS|IA LD (SUORIPUOD-PUE-SWLBILOO"AB| 1M Aled U1 |Uo//:Sdny) SUONIPUOD pue swie | 8y} 89S *[5202/0T/ET] Uo Akeiqiauliuo A8|IM ‘256628 Afeidi AISPAIUN ALISHIAINN ANNT A 80TOL GRB/TTTT OT/I0P/WO0 A8 |1 ARiq1 Ul juo//SANY Wo1) pepeo|umod '8 'SZ0Z ‘8E2899KT



on Species Coexistence.” Proceedings of the Royal Society B: Biological
Sciences 288:20211491.

Loarie, S. R., P. B. Duffy, H. Hamilton, G. P. Asner, C. B. Field, and
D. D. Ackerly. 2009. “The Velocity of Climate Change.” Nature 462:
1052-1055.

Marshall, D.J.,and S. C. Burgess. 2015. “Deconstructing Environmental
Predictability: Seasonality, Environmental Colour and the Biogeography
of Marine Life Histories.” Ecology Letters 18: 174-181.

Martin, J., E.Ringen, P. Duda, and A. Jaeggi. 2020. “Harsh Environments
Promote Alloparental Care Across Human Societies.” Proceedings of the
Royal Society B 287: 20200758.

Miles, J. 2014. “Tolerance and Variance Inflation Factor.” In Wiley
StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd.

Morrison, T. A., J. A. Merkle, J. G. C. Hopcraft, et al. 2021. “Drivers of
Site Fidelity in Ungulates.” Journal of Animal Ecology 90: 955-966.

Morrissey, M. B., and G. D. Ruxton. 2018. “Multiple Regression Is Not
Multiple Regressions: The Meaning of Multiple Regression and the Non-
Problem of Collinearity.” Philosophy, Theory, and Practice in Biology 10,
no. 3.

Norden, N., J. Chave, P. Belbenoit, et al. 2007. “Mast Fruiting Is a
Frequent Strategy in Woody Species of Eastern South America.” PLoS
One 2:€1079.

Nussey, D. H., T. H. Clutton-Brock, D. A. Elston, S. D. Albon, and E.
B. K. Loeske. 2005. “Phenotypic Plasticity in a Maternal Trait in Red
Deer.” Journal of Animal Ecology 74: 387-396.

O'Connor, M. 1., M. F. Piehler, D. M. Leech, A. Anton, and J. F. Bruno.
2009. “Warming and Resource Availability Shift Food Web Structure
and Metabolism.” PLoS Biology 7: €1000178.

Orzack, S. H. 1985. “Population Dynamics in Variable Environments.
V. The Genetics of Homeostasis Revisited.” American Naturalist 125:
550-572.

Parmesan, C. 2006. “Ecological and Evolutionary Responses to Recent
Climate Change.” Annual Review of Ecology, Evolution, and Systematics
37:637-669.

Pendergrass, A. G., R. Knutti, F. Lehner, C. Deser, and B. M. Sanderson.
2017. “Precipitation Variability Increases in a Warmer Climate.”
Scientific Reports 7: 17966.

Polato, N. R., B. A. Gill, A. A. Shah, et al. 2018. “Narrow Thermal
Tolerance and Low Dispersal Drive Higher Speciation in Tropical
Mountains.” Proceedings of the National Academy of Sciences 115:
12471-12476.

Quintero, I., and J. J. Wiens. 2013. “What Determines the Climatic
Niche Width of Species? The Role of Spatial and Temporal Climatic
Variation in Three Vertebrate Clades.” Global Ecology and Biogeography
22:422-432.

R Core Team. 2024. “R: A Language and Environment for Statistical
Computing.”

Revell, L. J. 2024. “Phytools 2.0: An Updated R Ecosystem for
Phylogenetic Comparative Methods (And Other Things).” PeerJ 12:
€16505.

Ringen, E. J., P. Duda, and A. V. Jaeggi. 2019. “The Evolution of Daily
Food Sharing: A Bayesian Phylogenetic Analysis.” Evolution and
Human Behavior 40: 375-384.

Riotte-Lambert, L., and J. Matthiopoulos. 2020. “Environmental
Predictability as a Cause and Consequence of Animal Movement.”
Trends in Ecology & Evolution 35: 163-174.

Rubenstein, D. R., and 1. J. Lovette. 2007. “Temporal Environmental
Variability Drives the Evolution of Cooperative Breeding in Birds.”
Current Biology 17: 1414-1419.

Rubio de Casas, R., C. G. Willis, W. D. Pearse, C. C. Baskin, J. M. Baskin,
and J. Cavender-Bares. 2017. “Global Biogeography of Seed Dormancy
Is Determined by Seasonality and Seed Size: A Case Study in the
Legumes.” New Phytologist 214: 1527-1536.

Salguero-Goémez, R., O. R. Jones, E. Jongejans, et al. 2016. “Fast-Slow
Continuum and Reproductive Strategies Structure Plant Life-History
Variation Worldwide.” Proceedings of the National Academy of Sciences
113: 230-235.

Shannon, C. E. 1948. “A Mathematical Theory of Communication.” Bell
System Technical Journal 27: 379-423.

Shumway, R. H., D. S. Stoffer, and D. S. Stoffer. 2000. Time Series
Analysis and Its Applications. Springer.

Siegel, S. 1956. Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill.

Stearns, S. C. 1981. “On Measuring Fluctuating Environments:
Predictability, Constancy, and Contingency.” Ecology 62: 185-199.

Stenert, C., R. Wiisth, M. M. Pires, R. F. Freiry, D. Nielsen, and L.
Maltchik. 2017. “Composition of Cladoceran Dormant Stages in
Intermittent Ponds With Different Hydroperiod Lengths.” Ecological
Research 32:921-930.

Stevens, S. S. 1958. “Measurement and Man.” Science 127: 383-389.

Tung Ho, L., and C. Ané. 2014. “A Linear-Time Algorithm for Gaussian
and Non-Gaussian Trait Evolution Models.” Systematic Biology 63:
397-408.

Van de Walle, J., R. Fay, J.-M. Gaillard, et al. 2023. “Individual Life
Histories: Neither Slow nor Fast, Just Diverse.” Proceedings. Biological
Sciences 290: 20230511.

Walker, P. A., and K. D. Cocks. 1991. “HABITAT: A Procedure for
Modelling a Disjoint Environmental Envelope for a Plant or Animal
Species.” Global Ecology and Biogeography Letters 1: 108-118.

Wiens, J. J., D. D. Ackerly, A. P. Allen, et al. 2010. “Niche Conservatism
asan Emerging Principle in Ecology and Conservation Biology.” Ecology
Letters 13: 1310-1324.

Yamamichi, M., A. D. Letten, and S. J. Schreiber. 2023. “Eco-
Evolutionary Maintenance of Diversity in Fluctuating Environments.”
Ecology Letters 26: S152-S167.

Zaccarelli, N., B.-L. Li, I. Petrosillo, and G. Zurlini. 2013. “Order and
Disorder in Ecological Time-Series: Introducing Normalized Spectral
Entropy.” Ecological Indicators 28: 22-30.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Data S1: geb70108-sup-0001-Supinfo.
pdf.

14 of 14

Global Ecology and Biogeography, 2025

95U8017 SUOWIWIOD BA1TE8.1D) 9{cfedl|dde au Ag peusenob ke s VO ‘88N 0 anl o) Akeiq 18Ul UO AS|IA LD (SUORIPUOD-PUE-SWLBILOO"AB| 1M Aled U1 |Uo//:Sdny) SUONIPUOD pue swie | 8y} 89S *[5202/0T/ET] Uo Akeiqiauliuo A8|IM ‘256628 Afeidi AISPAIUN ALISHIAINN ANNT A 80TOL GRB/TTTT OT/I0P/WO0 A8 |1 ARiq1 Ul juo//SANY Wo1) pepeo|umod '8 'SZ0Z ‘8E2899KT



	Environmental Predictability in Phylogenetic Comparative Analysis: How to Measure It and Does It Matter?
	ABSTRACT
	1   |   Introduction
	2   |   How to Measure Predictability?
	2.1   |   The Concept of Entropy in Information Theory
	2.2   |   Method 1: Colwell's Predictability With Fixed Binning
	2.3   |   Method 2: Colwell's Predictability With Dynamic Binning
	2.4   |   Fundamental Components of Colwell's Predictability
	2.5   |   Method 3: Normalised Spectral Entropy

	3   |   Using the Measures of Predictability
	3.1   |   How Does Climatic Predictability Vary Across the World?
	3.1.1   |   Data Collection
	3.1.2   |   The Global Pattern
	3.1.3   |   Conclusion 1: Different Predictabilities Are Quantifying Different Properties

	3.2   |   Do Different Climatic Quantities Correlate at the Scale of Species Ranges?
	3.2.1   |   Data Collection: A Reanalysis
	3.2.2   |   Correlation Between Predictabilities and Other Quantities
	3.2.3   |   Conclusion 2: Predictability Metrics Are Highly Correlated With Other Climatic Quantities


	4   |   Predictability in Phylogenetic Regression Analyses
	4.1   |   Do Predictability and SD Measures Increase the Explanatory Power of Regression Models (Without phyloPCA)?
	4.1.1   |   Statistical Methods and Interpretations
	4.1.2   |   Results
	4.1.3   |   Robustness Check Through Variable Importance Analysis

	4.2   |   Does Including Predictabilities and SDs in Phylogenetic PCA Analyses Increase the Explanatory Power of Principal Components in Regression Models?
	4.2.1   |   Statistical Methods and Interpretations
	4.2.2   |   Results
	4.2.3   |   Conclusion 3: Adding Some Predictability Measures Can Reduce Model Fit; Adding SDs Can Lead to Small Improvements


	5   |   Discussion
	5.1   |   Different Methodologies of Predictability Quantify Different Things
	5.2   |   Predictability for Real Organisms
	5.3   |   Explanatory Power of Climatic Quantities
	5.4   |   How Should We Move Forward?

	Author Contributions
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement
	References


