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ABSTRACT
Aim: Abiotic environmental conditions shape ecological and evolutionary processes, yet quantifying their influence on organ-
isms remains challenging due to variation among metrics and their intercorrelations. This study evaluates the utility of temporal 
environmental predictability measures and assesses their explanatory power in phylogenetic comparative analyses.
Innovation: We systematically compare widely used metrics of predictability and explore their correlations with environmental 
means and variances in a global meteorological dataset. Using cooperative breeding birds as a case study, we assess the impact 
of including predictability metrics in phylogenetic comparative analyses. We demonstrate the consequences of choosing specific 
metrics and the trade-offs between increased data inclusion and model interpretability.
Main Conclusions: Predictability metrics, though intuitively meaningful, have been conceptualised and quantified with di-
verse approaches. We found that different measures of predictability can exhibit contrasting global patterns and strong cor-
relations with other environmental quantities. Therefore, our findings caution against overloading statistical analyses with 
correlated predictors, highlighting the need for a thoughtful selection of environmental metrics to avoid spurious interpretations 
in ecological and evolutionary studies.

1   |   Introduction

Variation in abiotic environmental conditions has been argued to 
be important for evolutionary biology, macroecology and conser-
vation biology (Parmesan 2006; Wiens et al. 2010). For example, 
temperature and rainfall are key components of the environ-
ment that can drive eco-evolutionary dynamics, community 
stability and life history evolution (Orzack  1985; Drake  2005; 
Parmesan  2006; Barabás et  al.  2018; Yamamichi et  al.  2023). 
Biologists have increasingly used measures of such climatic vari-
ables from meteorological datasets to characterise the temporal 
dynamics of environments that species inhabit on a global scale, 

such as dormancy, trophic interactions, species diversity and 
conservation (Hawkins and Porter 2003; O'Connor et al. 2009; 
Araújo et  al.  2011; Jetz and Rubenstein  2011; Cornwallis 
et al. 2017; Rubio de Casas et al. 2017). Understanding how cli-
matic variation influences processes of adaptation and species 
population dynamics has become a more pressing issue with 
recent climate change (Loarie et al. 2009; Bathiany et al. 2018).

Among the terms commonly used to describe climate, tem-
poral predictability refers to the extent to which climatic vari-
ables follow a non-random temporal structure. It has been used 
in phrases such as predictable environment, unpredictable 
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rainfall and high predictability (Fisher et al. 2013; Cornwallis 
et  al.  2017; Fristoe et  al.  2017; Griesser et  al.  2017; Ringen 
et  al.  2019; Firman et  al.  2020; Martin et  al.  2020; Diamant 
et al. 2021). While formal metrics of predictability often focus 
on autocorrelation or periodicity within a single variable, many 
organisms rely on consistent environmental cues, regardless 
of their specific statistical properties, to anticipate future con-
ditions. For example, UK great tit populations use spring tem-
perature to time breeding in anticipation of peak caterpillar 
availability (Charmantier et al. 2008). Red deer use rainfall to 
predict plant growth (Nussey et al. 2005). The termination of the 
dormant stage in freshwater invertebrate eggs is closely linked 
to temperature increment or a recent rain event (Forrest and 
Thomson  2011; Stenert et  al.  2017). These examples highlight 
how organisms use temporal structure in the environment to 
make adaptive decisions, supporting the biological relevance of 
studying environmental predictability.

Predictability can be difficult to quantify. Most commonly, 
predictability refers to whether past observations are autocor-
related with current observations (Colwell  1974; Koenig and 
Knops  2000; Norden et  al.  2007; Botero et  al.  2014). In some 
cases, predictability is characterised by both seasonality (parti-
tioned data variance) and autocorrelation in the residuals (e.g., 
Marshall and Burgess  (2015)). Predictability has also some-
times been used interchangeably with variability (SD), where 
low predictability corresponds with high variability (Jetz and 
Rubenstein 2011). In other cases, measures of unpredictability 
have been defined by life history outcomes, such as offspring 
mortality (Caro et al. 2016) and rates of development (Brumbach 
et al.  2009). Consequently, the concept of predictability, while 
intuitive, has been studied using various metrics, with unclear 
relationships between them and uncertain impacts on conclu-
sions in comparative studies.

In addition to predictability, the contributions of tempera-
ture and rainfall to species adaptations are often summarised 
across different moments of their temporal distribution. These 
moments usually include the average (mean) and the variation 
using standard deviations (SD) or sometimes the variance. 
These two quantities, average and SD, have been widely used 
in biological studies to capture differences in environmental 
conditions, such as temperature and rainfall and how much 
they fluctuate over time (Lawing and Polly  2011; Diamant 
et al. 2021). For example, it has been argued that environments 
with a high average temperature and a low/variable rainfall 
are relatively harsher environments for breeding birds and 
mammals (Cornwallis et al. 2017; Firman et al. 2020; Martin 
et al. 2020). To capture such harsh environments, do we need 
all climatic variables and moments of their temporal distri-
butions, or is it potentially compromised by the correlation 
between each quantity? And more generally, is it problematic 
to include multiple climatic quantities into these phylogenetic 
comparative studies?

Here, we address these questions in three sections. First, we 
begin with a systematic comparison of the most frequently 
used predictability measures (Section  2). This section aims 
to illustrate what the conceptual similarities are between dif-
ferent predictability measures and how they differ from each 
other in their calculations. Second, we apply these measures 

to a standard global meteorological dataset (Section 3.1) to ask: 
how are climatic quantities distributed across the globe, and to 
what extent each measure correlates to each other on the scale of 
species distribution ranges. Third, we examine the explanatory 
power gained from adding multiple climatic quantities—the 
mean, standard deviation and predictability of both temperature 
and precipitation—in the context of phylogenetic comparative 
analysis (Sections 3.2–4.2). We reanalysed a published dataset 
on the evolution of cooperative breeding in birds as a case study 
(Cornwallis et al. 2017). We then return to the biological mean-
ing of predictability in the discussion, and especially how it de-
pends upon the perception of organisms and not just climatic 
variables.

2   |   How to Measure Predictability?

Before comparing the difference between the commonly 
used predictabilities, we introduce their definition and un-
derlying concepts. We compared three different methods for 
quantifying predictability: Colwell's predictability with fixed 
binning, Colwell's predictability with dynamic binning, and 
normalised spectral entropy. The first two methods were de-
veloped by Colwell  (1974) and have been commonly used in 
phylogenetic comparative analysis over the last decade (Fisher 
et al. 2013; Cornwallis et al. 2017; Fristoe et al. 2017; Griesser 
et  al.  2017; Ringen et  al.  2019; Firman et  al.  2020; Martin 
et  al.  2020; Diamant et  al.  2021). Both of Colwell's predict-
ability measures are calculated by putting observations into 
data categories and using the Shannon information statistic, 
also known as information entropy, to calculate uncertainty 
across time and data categories. The third method is from spa-
tial and movement ecology, where some recent papers have 
suggested using spectral entropy to calculate the periodicity 
of time series data (Zaccarelli et al. 2013; Riotte-Lambert and 
Matthiopoulos  2020; Morrison et  al.  2021). We chose these 
three methods because of their popularity (for Colwell's mea-
surements) and because of their potential methodological ben-
efits (for normalised spectral entropy). As all methods apply 
the concept of information entropy to measure the degree of 
uncertainty, we first explain the concept of entropy, then de-
scribe the three methods in more detail, and finally use two 
example time series to illustrate the similarities and differ-
ences between each method.

2.1   |   The Concept of Entropy in 
Information Theory

Entropy is one of the fundamental concepts in thermodynamics 
and it measures the degree of uncertainty. The most commonly 
used formulation was developed by Shannon (1948),

where X  is the data, i is the index in observation categories, p is 
the proportion of observations belonging to the focal category, 
and s is the number of categories. H(X ) is called normalised in-
formation entropy in information theory, and normalisation is 
added to facilitate comparison between different data. H(X ) is 

(1)H(X ) =
∑s

i
− piln

(

pi
)

∕ ln(s)
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maximised when all p have equal values, and minimised when 
one p is 1 and all others are 0. In other words, larger values of H 
indicate greater uncertainty.

While all three methods use the same formulation of H(X ), the 
key difference between them is how categories are defined. For 
fixed and dynamic binning measures of Colwell's predictability, 
the continuous observational data are ‘binned’ or grouped into 
discrete quantity categories, so that two observed X  values with 
small differences are viewed as being in the same category. In 
contrast, normalised spectral entropy uses frequencies of waves 
to define categories.

2.2   |   Method 1: Colwell's Predictability With Fixed 
Binning

Colwell's predictability focuses on the yearly cycles by processing 
data from the same time of the year (e.g., month) into categories 
that capture different levels of intensity in the variable of interest 
(e.g., 1°C bins in mean temperature). Here, X  (columns) refers to 
the time in the cycle and Y  (rows) refers to the number of sam-
pled cycles in which a given month exhibited environmental val-
ues of a certain level. We call this table the processed occurrence 
table and visualise it in the form of heat maps in Figure 1. For 
example, if we have monthly temperature data for 5 years with 60 
observations, the processed occurrence table would have 12 col-
umns, each represents a month (X) and a number of rows, each 
stands for a data category (Y ). The sum of each column is there-
fore 5 (i.e., 5 observations per month). Subsequently, Colwell's 
predictability is defined as,

where H(X ) is the uncertainty over time to account for miss-
ing observations, H(XY) is the uncertainty over all cells in the 
table. Note that there is a slight difference in Equation (2) versus 
Colwell's original paper, because we have already included ln(s) 
within the entropy function.

Importantly, the final component is how each data category is 
defined in the processed occurrence table. For instance, one 
could define it as 1°C, or any arbitrary value, because they are 
interested in a certain thermal resolution of temperature time se-
ries data. For any given time series, we could maintain the same 
resolution of the data because the bin width of each data cate-
gory does not change with the range of the input data. We refer 
to this binning method as ‘fixed binning method’. The rationale 
behind Colwell's method was to provide a generic way to cal-
culate predictability for both continuous and discrete variables, 
where the latter one cannot be treated with traditional time se-
ries analysis (i.e., nominal measures; Siegel 1956; Stevens 1958; 
Colwell 1974).

We generated two example time series to illustrate how methods 
vary (Figure 1a). Time series 1 was generated from a sine wave 
of yearly cycle with the addition of some white noise. The sine 
wave fluctuates between 1 and −1, while the white noise ranges 
between 0.25 and −0.25. Each datapoint represents a monthly 
average temperature for a 5-year period. For simplicity, we did 

not shift this temperature time series to more common values 
(e.g., 15°C) because shifting does not change the results. Time 
series 2 is time series 1 multiplied by 5 so the only difference be-
tween them is the scale of variation. The processed occurrence 
table for both time series, with 1°C width for each data category 
on the rows, ranging from −6°C to +6°C is given in Figure 1. 
This shows that time series 1 is concentrated on a few rows, 
whereas time series 2 is much more spread out. Consequently, 
Colwell's predictability with fixed binning method results in 
time series 1 being more predictable than time series 2 (0.924 
vs. 0.803).

2.3   |   Method 2: Colwell's Predictability With 
Dynamic Binning

An alternative approach for creating data categories is keeping 
the number of valid rows constant between input data, and let-
ting the bin widths vary. That is, the width of a data category 
changes with the difference of maximal and minimal obser-
vation in a time series. The benefit of this approach is that it 
provides a cleaner measure of periodicity, that is independent of 
the average or variability (SD). The cost of this approach is that 
the calculation unit is not consistent across the entire globe—a 
difference in one degree Celsius will be a bigger jump between 
categories when the range of the input time series is smaller. 
Historically, the binning details have been suggested to cause 
differences in Colwell's indices and were discussed in the con-
text of fix-state and scaled-state calculation (Beissinger  1986; 
Gan et  al.  1991; Beissinger and Gibbs  1993). An example is 
shown in Figure 1c, where both time series are processed into 
tables of 25 rows. We call this method ‘dynamic binning’ be-
cause the definition of a single bin (i.e., data category) is dy-
namic and depends on the scale of the input data. Because data 
are compressed at the same level, both example time series have 
equal predictabilities of 0.691.

2.4   |   Fundamental Components of Colwell's 
Predictability

As pointed out in Colwell's original paper (Colwell  1974), 
Colwell's predictability contains two fundamental compo-
nents: constancy and contingency, where each can be re-
ferred to as a predictability measure. Constancy focuses on 
whether observations are always in the same data category, 
C = 1 −H(Y ), where H(Y ) is the uncertainty over data cate-
gories. On the other hand, contingency focuses on whether 
observations from the same month of different years are 
in the same data category while being distinct from other 
months, M = H(X ) +H(Y ) −H(XY). Constancy and contin-
gency have been analysed extensively in movement ecology 
because of their distinctive meaning, where contingency 
in particular has been closely linked to temporal structure 
and spectral entropy (see a recent review in Riotte-Lambert 
and Matthiopoulos  (2020)). Despite this, most comparative 
studies have focused on the composite predictability metric, 
rather than examining individual components. We will ex-
amine these distinctions in Sections 3.1.2 and 5.1 and in the 
Supporting Information S1: Section 2.2.

(2)PColwell = 1 − (H(XY) −H(X ))
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FIGURE 1    |    Three different types of predictabilities estimated for two example time series. (a) The raw data from the two time series. Time series 
1 is generated through a sine wave plus random numbers bounded between −0.25 and 0.25. Time series 2 is time series 1 multiplied by a factor of 5. 
(b–d) The processed data, or intermediate step, used in calculating three types of predictability. We set the bin width to 1 for fixed binning, and set 
25 categories for dynamic binning. Brighter colour indicates there is a higher occurrence.
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2.5   |   Method 3: Normalised Spectral Entropy

Normalised spectral entropy is calculated from a Fourier spec-
trum produced by discrete Fourier transformation compared 
to the occurrence table in Colwell's methods. Discrete Fourier 
transformation is one of the standard methods in time series 
analysis (Shumway et al. 2000); it uses a discrete set of sine waves 
to describe the input data set: if the data are very noisy, such as 
white noise, then the resulting spectrum would have roughly 
equal amplitudes across all frequencies; if the data is very pe-
riodic, then the spectrum would have a few amplitude peaks 
and almost zero amplitudes in other frequencies. Normalised 
spectral entropy analyses the distribution of these amplitudes 
and treats each frequency as a category to calculate uncertainty 
(histogram in Figure 1d). Specifically,

where X is the Fourier spectrum, pi is the amplitude of focal fre-
quency divided by the sum of amplitudes, and s is the number of 
frequencies in the spectrum (equal to half the length of the time se-
ries; Zaccarelli et al. (2013)). Thus, predictability with normalised 
spectral entropy is quantifying the periodicity of input data: a 
white noise would produce a low predictability, and a pure sine 
wave would produce the highest predictability. See Supporting 
Information S1: Section 7.1 for graphic examples.

Normalised spectral entropy focuses on the uncertainty among 
frequencies, which is more independent of the variance of the data 
(compared to Method 2). One potential benefit of this is that spec-
tral entropy looks into autocorrelation across multiple timescales 
such as days, months and years, while Colwell's calculation focuses 
on the correlation between years (12 months lag). In other words, 
the periodicity in multiple-year events like El Nino and La Nina 
can be captured by spectral entropy but not Colwell's measures. 
Another potential benefit is almost no information is lost during 
the transformation process in spectral entropy (except the phase of 
each sine wave) and it could be more sensitive to capture temporal 
signals (Stearns  1981; Beissinger and Gibbs  1993). Nevertheless, 
the downside of spectral entropy is the same as Method 2 that the 
calculation unit is not constant and varies with the scale of input 
data, and so far it has not been used in phylogenetic comparative 
analysis. Going back to our two example time series (Figure 1d), 
because the amplitude scales up evenly across all frequencies (at a 
factor of squared scaling so that time series 2 has 25 times larger 
amplitudes than time series 1), the normalised spectral entropy is 
identical between both time series: 0.796. We provide additional 
discussion between each method and the source code of Figure 1 
in Supporting Information S1: Section 7.

3   |   Using the Measures of Predictability

Next, we estimated the three measures of predictability for tem-
perature and precipitation across the Globe from a meteorologi-
cal dataset to ask: do certain places on earth consistently have a 
higher degree of predictability in temperature (Section 3.1); and 
how much does each climatic quantity correlate to each other in 
(Section 3.2).

3.1   |   How Does Climatic Predictability Vary Across 
the World?

3.1.1   |   Data Collection

We collected climatic data from the climate research unit 
(CRUTS v4.06; Harris et al.  (2020)), by taking monthly mea-
surements of temperature and precipitation (rainfall). We 
collected the data from January 1901 to December 2020, 
at a spatial resolution of 0.5° × 0.5° longitude-latitude grids 
(~55.5 km north-to-south, east-to-west varies with latitude). 
For each grid, we processed the climatic data into average, SD 
and the three predictabilities over the 1440 months (N = 67,420 
grids).

3.1.2   |   The Global Pattern

The three methods for measuring temperature predictabil-
ity generated different global patterns (Figure 2a–c). Colwell's 
predictability with fixed binning (Method 1) is highest around 
the equator, but the other two methods (2&3) find that predict-
ability is lowest in those regions (Figure  2a vs. Figure  2b,c). 
Because Method 1 is influenced by variability and periodicity, 
higher predictability measures can occur in less seasonal places 
because they show less variation. In contrast, Colwell's predict-
ability with dynamic binning and normalised spectral entropy 
is focused on measuring periodicity (Methods 2 and 3). This is 
greatest in areas which show more consistent seasonality, which 
is in more temperate areas where there are warmer summers 
and colder winters. The opposite is also true for tropical places 
where temperature is less periodic because of less seasonality 
(see Supporting Information S1: Section 2.1 and Figure S1 for 
the quantitative correlation results).

The three methods applied to precipitation data also showed dif-
ferent global patterns (Figure 2d–f). All methods suggest rainfall 
is highly predictable in the Amazon rainforest, Arabian Desert 
and some regions of the Himalayas, but they disagree regard-
ing Africa, Northern America and Eurasia. This inconsistency 
is likely because Colwell's predictability uses log-2-based bin-
ning in both Methods 1 and 2 to reduce the correlation between 
SD and mean, whereas Method 3 does not (Colwell 1974). We 
also provide the global maps for averages and SDs of tempera-
ture and precipitation in Figure 3 for comparison. In Supporting 
Information S1: Section 2.2, we provide further analysis on the 
global patterns of constancy and contingency, the two finer 
components of Colwell's predictability. We found that the differ-
ences between Methods 1 and 2 versus Method 3 are mostly due 
to constancy (Figures S2 and S3). In contrast, there is great simi-
larity between the patterns of contingency and spectral entropy, 
but the quantities still vary with binning methods (Figures S2 
and S3).

3.1.3   |   Conclusion 1: Different Predictabilities Are 
Quantifying Different Properties

With temperature, we found that Colwell's predictability with 
fixed binning (Method 1) creates contrastingly different results 
than the other two methods, which appear to be because it is 

(3)PSpcEntropy = 1 −H(X ) = 1 −

∑s
i − pi ln

�

pi
�

ln(s)
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capturing both the repeatability of oscillations and the over-
all tendency to oscillate at the same time. With precipitation, 
normalised spectral entropy had the opposite correlation to 
Colwell's predictabilities.

3.2   |   Do Different Climatic Quantities Correlate at 
the Scale of Species Ranges?

With the knowledge that methods in quantifying predict-
ability can generate a variety of global patterns, we analysed 
the correlation between predictability measures as well as 
mean and SD of climatic variables. This is a crucial step be-
fore moving to phylogenetic regression analysis; because 
high correlation leads to problems of collinearity in model  
interpretation.

3.2.1   |   Data Collection: A Reanalysis

We used a global bird data set published in 2017 as a case study 
to test the usefulness of different measures of environmen-
tal variables (Cornwallis et  al.  2017). The data contains 286 
bird species for which there were estimates of multiple pater-
nity, climatic variation and the breeding system (cooperative 
breeder or not). We re-extracted climate data for the study 
sites for each species from the global CRU dataset presented 
in the previous section. For simplicity, we assume species 
abundance is uniform within study sites, and the average was 
taken with equal weighting for each spatial grid at the unit 
of months. We examined how each method of predictability 
correlated with the average and SD. To increase the normality 
of data, we applied transformations to some of the variables 
before the analysis (also applied to Figure S2 for consistency). 

FIGURE 2    |    Measuring climate predictability on a global scale. (a–c) The three predictabilities for temperature. Methodological details for bin-
ning in Colwell's predictability are described in Figure 1. (d–f) The three predictabilities for precipitation. Following previous literature and Colwell's 
original paper, the bins for precipitation data when calculating Colwell's predictability are on a log2 scale. Normalised spectral entropy, on the other 
hand, does not have this log2 transformation pre-process (i.e., calculation process is identical for temperature and precipitation in entropy method). 
For temperature, Method 1 (a: Fixed binning) shows higher predictabilities in tropical, seasonal places, whereas Methods 2 and 3 (b and c) show 
higher predictabilities in temperate, seasonal places. For precipitation, the different methods disagree with each other on where predictability is high 
or low (d–f).
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Supporting Information S1: Section 6 contains the Q-Q plots 
for various common transformations to show the transforma-
tions we applied are appropriate.

3.2.2   |   Correlation Between Predictabilities 
and Other Quantities

We found very strong correlations between all temperature 
predictabilities, the average and the SD (Figure  4a–f). In 
highly seasonal regions (low average and high SD of tempera-
ture), Colwell's predictability with fixed binning (Method 1) 
has low predictability values, while the other two methods 
have high predictability values compared to less seasonal re-
gions. These findings are consistent with the global pattern 
in Figure  S4. Taken together, we found that predictabilities 
have overlapping properties with the average and the SD, 
providing limited extra information (see Section 5.3 for more 
explanation).

There were much weaker correlations for the precipita-
tion predictability measures and the average and the SD 
(Figure  4g–l). The correlation coefficients were lower in the 
precipitation analysis than in the temperature analysis, which 
is consistent with the global analysis (Figure  S4). However, 
unlike the global dataset (Figure S4) where the three predict-
abilities had inconsistent relationships with the average and 
SD of precipitation, we found positive correlations between 
all precipitation predictabilities in the cooperative breeding 
bird dataset. These results suggest that the predictabilities 
are not independent of the average or the SD of precipitation 
and highlight that the relationship in precipitation can vary 
across datasets that include different regions. In Supporting 
Information S1: Section 2.4, we analysed the correlation be-
tween means and SDs and found even stronger correlations 

than between predictabilities (Figure S5). We also conducted 
a similar analysis on precipitation coefficient of variation, an 
alternative variance measure (Figure S6). Together, these re-
sults highlight the potential problem of including both aver-
ages and SDs as independent covariates in regression models 
(due to collinearity) and justify the use of phylogenetic prin-
cipal component analysis (phyloPCA) in the original paper as 
one common practice.

3.2.3   |   Conclusion 2: Predictability Metrics Are Highly 
Correlated With Other Climatic Quantities

We found strong correlations between the average and the SD 
of climatic variables. Similarly, we found correlations between 
predictabilities and other quantities, regardless of the calcula-
tion method. However, comparing patterns in the global and 
regional datasets showed that only results with temperature 
predictability (Figure  4a–f, Figure  S4a–f) were consistent, 
with precipitation results varying across datasets (Figure 4g–l; 
Figure S4g–l). This result highlights that climatic quantities 
are correlated, but that the direction of correlation is dataset 
dependent.

4   |   Predictability in Phylogenetic Regression 
Analyses

The correlations between climatic quantities have been 
pointed out by many meteorologists and biologists (Walker and 
Cocks 1991; Kriticos et al. 2014; Dinnage 2023). This raises the 
question of how much extra statistical explanatory power is 
provided by including multiple climatic quantities in an anal-
ysis? We used phylogenetic logistic regression models to anal-
yse the presence of cooperative breeding (response variable) 

FIGURE 3    |    Climate averages and SDs across the globe. (a) Average temperature. (b) Temperature SD. (c) Average precipitation. (d) Precipitation 
SD. All data are averaged across 1901–2020, and transformations were made to improve normality.
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in relation to climatic variation (explanatory variables). We 
accounted for the non-independence of data that arises due to 
species phylogenetic relationships by modelling the phyloge-
netic correlation between residuals (Felsenstein 1985; Harvey 
and Pagel 1991).

In Section 4.1, we sequentially added raw climatic quantities 
as explanatory variables to quantify changes in explanatory 
power in phylogenetic regression models. In Section  4.2, we 
used the same approach, but included principal component 
scores as explanatory variables, which were constructed using 
different combinations of climatic quantities in a phylogenetic 
principal components analysis. These two different methods 
are both commonly used and each offers different advantages: 
biological interpretation can be clearer with separate esti-
mates of each explanatory variable in multiple regressions, 
but results may be unreliable due to high multicollinearity, 
and vice versa for principal components. In addition to these 
two established methods, we also carried out a series of ran-
dom forest analyses in Supporting Information S1: Section 5, 
but these results should be interpreted with caution as there 
is no established way to include phylogenetic information in 
such analyses.

4.1   |   Do Predictability and SD Measures Increase 
the Explanatory Power of Regression Models 
(Without phyloPCA)?

4.1.1   |   Statistical Methods and Interpretations

We used phylogenetic regressions to directly compare models with 
different predictors, using model selection procedures to evaluate 
competing models, and estimate the percentage of variance ex-
plained by different predictors (partial R2). Specifically, we used 
maximum penalised likelihood estimation, a well-established al-
gorithm in frequentist statistics, to find the best model (Anderson 
and Blair 1982; Tung Ho and Ané 2014). To evaluate model fitting, 
we calculated the Akaike information criteria (AIC) and overall 
R2 (R2

lik
; Ives (2018)). AIC balances model fit and model complexity 

with lower AIC values indicating favoured models, while higher 
R2 indicates that more variance in the input data is explained.

To examine the extent of multicollinearity in each regression 
model, we used variance inflation factors (VIF) from gener-
alised linear models (GLM) with binary error distributions 
(logistic regression) that were equivalent to our phylogenetic 
models (because there is no readily available VIF tool for 

FIGURE 4    |    Correlations between predictabilities and other climatic quantities across species. Against the (a–c) average temperature, (d–f) stan-
dard deviation of temperature, (g–i) average precipitation and (j–l) standard deviation of precipitation. In each panel, we report Pearson's correlation 
coefficient, ρ, with 95% confidence interval and p-value.
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phylogenetic logistic regressions). VIF gives an indication as to 
how much the standard error in the estimated coefficient is in-
flated (Miles 2014). If a VIF is 4, it means the standard error is 
2 times (square root of 4) larger than if that predictor had no 
correlation with other predictors. The degree of multicollinear-
ity is subjective. Here we use the term moderate collinearity to 
describe cases where the VIF ranges between 2 and 4, and high 
collinearity where the VIF is larger than 4. We carried out the 
analyses using R v4.3.0, phylolm package v2.6.2, rr2 package 
v1.1.0 and car package v3.1.2 (Tung Ho and Ané 2014; Fox and 
Weisberg 2019; Ives 2018; R Core Team 2024).

Our first approach was to analyse the data with just the averages 
of temperature and precipitation, and then examine the extent to 
which our model is improved by adding standard deviations and 
predictabilities sequentially. To do this, we analysed five models: 
the mean model where cooperative breeding was predicted by 
average temperature and average precipitation (2 predictors); the 
SD model where SDs were added to the mean model (4 predic-
tors); the fixed predictability model where Colwell's predict-
ability with fixed binning was added to model 2 (6 predictors); the 
dynamic predictability model where Colwell's predictability 
with dynamic binning was added to model 2 (6 predictors); and 
the entropy predictability model where normalised spectral 
entropy was added to the SD model (6 predictors). We discuss the 
limitation of this model design in Section 5.3.

4.1.2   |   Results

We found that adding predictability to regression models that al-
ready include average and SD increased AIC and reduced over-
all R2 values (SD model compared to predictability models in 
Table 1). These results support our previous correlation analyses 

(Figure  4) and suggest that including predictability does not 
increase the power to explain cooperative breeding (over that 
provided by the mean). We also found that adding SDs improved 
the model, but only by a small ΔAIC (slightly greater than 2) and 
only by a 3% increase to R2. This small improvement aligns with 
the correlation analysis of averages and SDs (Figure S5). Thus, 
there is a limited gain in explaining cooperative breeding from 
adding variability (SD) measurements to a model that already 
contains the mean. The summaries of all five regression mod-
els are in Supporting Information S1: Section 3.1. We also per-
formed an alternative analysis, replacing precipitation SD with 
the coefficient of variation (CV) in Supporting Information S1: 
Section 3.3, because CV is less correlated with average precip-
itation than SD. We found adding CV also leads to a marginal 
improvement but adding predictability on top of CV leads to 
mixed results.

Multicollinearity was moderate to strong in all models apart 
from the mean model (Table 2). In particular, the SD model had 
moderate levels of collinearity between all predictors; the fixed 
predictability model had four out of six predictors with strong 
collinearities, and the dynamic and entropy predictability mod-
els both had one predictor with strong collinearity. These results 
suggest that the evaluated model estimates between climate and 
cooperative breeding, especially all predictability models, may 
be jeopardised by including multiple correlated climate sum-
mary statistics.

4.1.3   |   Robustness Check Through Variable 
Importance Analysis

Our above approach examined the explanatory power of grad-
ually adding in higher moments of the climatic variables (first 

TABLE 1    |    Summary of model fitting for each phylogenetic regression model analysing the cooperative breeding bird data from Cornwallis 
et al. (2017).

Model type
Mean Model 
(2 predictors)

SD Model  
(4 predictors)

Predictability 
(fixed) Model 
(6 predictors)

Predictability 
(dynamic) Model 

(6 predictors)

Predictability 
(entropy) Model 

(6 predictors)

AIC 192.321 190.065 200.722 204.988 202.598

Overall R2 0.348 0.378 0.346 0.325 0.337

TABLE 2    |    Variance inflation factor analysis of each phylogenetic regression model.

Predictor
Mean 
Model SD Model

Predictability 
(fixed)

Predictability 
(dynamic)

Predictability 
(entropy)

Temperature average 1.221 2.441 2.691 2.969 3.07

Precipitation average 1.221 3.211 7.113 3.251 3.367

Temperature SD NA 2.98 5.917 4.754 5.338

Precipitation SD NA 3.271 6.014 3.399 3.715

Temperature 
predictability

NA NA 6.453 2.439 3.202

Precipitation 
predictability

NA NA 2.321 1.489 1.789
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SD and then predictability). As an alternative, we performed a 
relative variable importance analysis. In this approach, a series 
of regression models are built with each possible combination of 
climatic quantities, and the differences in the model AICs are 
used to calculate the sum of the weights for each variable. The 
advantage of this approach is that there are no prior assump-
tions about the hierarchy between climatic quantities (we don't 
start with the mean and work up to SD and then predictability). 
However, the disadvantage is that multicollinearity could be 
high in many models, as shown in Table 2.

We repeated three equivalent relative variable importance anal-
yses, one for each predictability, and found the most important 
climatic quantities are very volatile (Supporting Information S1: 
Section 3.2). Averages and SDs are the most important factors 
in dynamic binning and spectral entropy, but predictabilities 
are the most important factors in the fixed binning method 
(Tables S2–S4). Furthermore, many of the weights are similar 
to each other, probably due to multicollinearity, which makes 
it difficult to estimate the importance of climatic quantities. 
Overall, it is hard to disentangle from these analyses which is 
the ‘best’ single variable to include in phylogenetic multiple re-
gression models.

4.2   |   Does Including Predictabilities 
and SDs in Phylogenetic PCA Analyses Increase 
the Explanatory Power of Principal Components in 
Regression Models?

4.2.1   |   Statistical Methods and Interpretations

We analysed the same dataset for cooperative breeding in birds, 
but with principal components (PCs) as explanatory variables. 
We used phylogenetic principal component analysis (phyloPCA; 
phytools package v2.0; Revell  (2024)) to find the best linear 
combination of climatic quantities. Following previous work 
(Cornwallis et al. 2017), we z-transformed all quantities to stan-
dardise their scales and avoid biased estimations on PC weights 
(mean = 0 and SD = 1). We used the first two PCs as explana-
tory variables in phylogenetic logistic regression models: each 
PC axis captures a distinct aspect of climatic data, with PC1 
representing the greatest variance and PC2 the next. As in the 
previous section, we analysed five regression models where PC1 
and PC2 were generated with the same sets of explanatory vari-
ables: the averages, the averages and SDs and the three different 
predictability estimates. We call these models the mean-PCA 
model, SD-PCA model and predictability-PCA models. We 
ask if the PCs with more quantities better explain the occurrence 

of cooperative breeding in birds, by comparing the model AICs 
and overall R2s.

4.2.2   |   Results

We found that adding predictabilities to PCAs resulted in a 
marginally better or worse regression model fits (SD-PCA 
model compared to predictability-PCA models in Table 3). Only 
the fixed predictability-PCA model had a reduced AIC and in-
creased overall R2, whereas the dynamic predictability-PCA 
model is much worse than all other models. This result high-
lights that the binning method can alter results and supports 
conclusion 3 that adding predictabilities to the analysis does 
not improve models. Furthermore, by comparing the mean-
PCA model and SD-PCA model, we found that AIC was only 
marginally significantly reduced and the R2 was only improved 
by 1%. Thus, adding SD had a very limited effect on explaining 
cooperative breeding (see Figure S7 for the PC composition in 
biplots).

4.2.3   |   Conclusion 3: Adding Some Predictability 
Measures Can Reduce Model Fit; Adding SDs Can Lead 
to Small Improvements

When examining the occurrence of cooperative breeding, we 
found that relative to a model that already contained the mean, 
adding predictabilities does not improve the model in most cases 
and can make it worse; and SDs only slightly improved models 
and increased multicollinearity in multiple regression analyses. 
Together, the results here suggest there is a high overlap in the 
amount of variation explained in cooperative breeding by mean, 
SD and predictability, which agrees with the correlation analy-
sis in conclusion 2. In line with the findings above, our random 
forest analysis suggests that all climatic quantities have similar 
importance and are clustered into a small number of groups 
(Supporting Information S1: Section 5.3; Figure S10). These re-
sults further indicate the difficulty in discerning the single most 
important climatic property that associates with the evolution of 
cooperative breeding.

5   |   Discussion

We found that predictability can be measured in different ways, 
but that these were correlated with other climate variables; and 
so did not significantly increase the explanatory power of anal-
yses. First, different predictability measures give different and 

TABLE 3    |    Summary of model fitting for all PCA-processed regression models analysing the cooperative breeding bird data from Cornwallis 
et al. (2017).

Model type

Mean-PCA 
Model  

(2 predictors)

SD-PCA 
Model  

(2 predictors)

Predictability-
PCA (fixed) Model 

(2 predictors)

Predictability-
PCA (dynamic) 

Model  
(2 predictors)

Predictability-PCA 
(entropy) Model 

(2 predictors)

AIC 192.377 190.368 189.459 209.132 191.978

Overall R2 0.348 0.357 0.362 0.265 0.350
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potentially opposite results (Figure 2). This finding highlights 
the importance of considering binning methods (fixed, dynamic, 
or other ways) when interpreting results, an issue that has been 
largely neglected in the application of Colwell's metrics. Second, 
the average, SD and predictabilities were all highly correlated 
for temperature and to a lesser extent for precipitation (Figure 4, 
Figure S4), indicating potential issues in interpreting statistical 
models with multiple climatic quantities. Third, there is limited 
gain from adding multiple climatic quantities to phylogenetic 
multiple regression or PC analyses.

5.1   |   Different Methodologies of Predictability 
Quantify Different Things

We found that different measures of predictability can give very 
different results, and that the best measure to use could depend 
upon the aims of the study. Colwell's predictability with fixed 
binning (Method 1) suggests that more tropical climates are more 
predictable, because they show smaller variation. Colwell's pre-
dictability with dynamic binning and normalised spectral en-
tropy (Method 2 and 3) suggest that more temperate climates are 
more predictable because they show stronger seasonality (larger 
variation, but seasonally predictable). The predictability termi-
nology can therefore be confusing, and the choice of method 
will likely depend on whether periodicity, variability or both are 
important to investigate. In particular, Colwell's predictability 
with dynamic binning is measuring periodicity across years, 
and normalised spectral entropy is measuring periodicity across 
a broad range of time scales (Figure  1c,d). Consequently, it 
might be simpler to just refer to these two metrics as ‘periodicity’ 
or ‘cycle repeatability’. On the contrary, Colwell's predictability 
with fixed binning is measuring periodicity rescaled by variabil-
ity (Figure 1b), thus could be called as ‘rescaled periodicity’ or 
‘rescaled cycle repeatability’.

Continuing on the difference between fixed and dynamic bin-
ning, past literature from the 1980s and 1990s has pointed out 
Colwell's predictability is sensitive to how data is categorised 
(Stearns 1981; Beissinger 1986; Gan et al. 1991; Beissinger and 
Gibbs 1993). Among this literature, Gan et al. (1991) created two 
binning methods that are very similar to ours, fixed-states and 
scaled-states predictabilities. However, there are key differences: 
our fixed binning uses uniform bin widths, unlike their arbi-
trary ranges; our dynamic binning creates a constant number 
of bins based on the range of data, while theirs scales with the 
mean. This difference, as well as the difference in sample size, 
might lead to an opposite correlation being found between our 
study and their study (Supporting Information  S1: Section  2.3 
vs. Beissinger and Gibbs  (1993)). Our binning methods were 
adopted from the original study (fixed; Cornwallis et al. 2017), 
and the default method in the hydrostat package (dynamic). 
Unfortunately, the binning method is not described in other 
comparative studies analysing climatic quantities and biological 
traits. Our finding aligns with previous literature, suggesting 
this is a decisive detail when using Colwell's predictability and 
should be carefully treated to avoid accidentally making mis-
leading predictability measures.

Colwell's method can also be broken down into two compo-
nents that capture different aspects of predictability: constancy 

and contingency. This examines how environments can be 
predictable because they never change (high constancy), or be-
cause they are easy to anticipate (high contingency; Supporting 
Information S1: Section 2.2, Figure S3). In particular, we found 
contingencies of both binning methods match well with nor-
malised spectral entropy, suggesting they might have similar bi-
ological interpretations. The utility of different measures could 
also depend upon the geographical area examined. For example, 
if examining tropical organisms, then constancy could be the 
most useful metric because it captures differences among rela-
tively stable habitats (low seasonality). In contrast, if temperate 
organisms are examined, then contingency could be more use-
ful because it captures autocorrelations among relatively vari-
able habitats (high seasonality). Finally, if examining across the 
entire globe, then it could be useful to examine predictability 
due to both constancy and contingency.

5.2   |   Predictability for Real Organisms

An important biological question is: what is predictability from 
an organism's perspective? It is likely that predictability is a 
species-explicit and time-explicit property as organisms observe 
their surrounding environments in different durations or differ-
ent periods of the same time frame, and as different organisms 
could live on drastically different time scales with different life 
histories (Salguero-Gómez et al. 2016; Van de Walle et al. 2023). 
Moreover, it is possible that meteorological measures of predict-
ability relate very poorly to an organism's ability to predict the 
environment because of the time resolution of these climatic 
data. At one extreme, consider a case where the meteorological 
data suggest that environmental conditions show low predict-
ability or periodicity, but the organisms can use finer environ-
mental cues to predict future environmental conditions. In this 
case, the environment would be highly predictable to that or-
ganism (Botero et al. 2015). At the other extreme, if organisms 
cannot predict environmental variation on the scale of their life-
time, the environment could be less predictable than suggested 
by meteorological measures. Altogether, the term' predictability' 
in terms of how it matters, is a term that implies intentional-
ity from an organismal perspective—this can be something 
very different from the entropy measures of periodicity or other 
aspects of predictability (Ghoul et  al.  2014). Empirical studies 
could address this by carefully considering the temporal and 
spatial resolutions that are biologically meaningful for their 
focal species at the earliest stages of study design.

5.3   |   Explanatory Power of Climatic Quantities

Our results raise the issue of how much additional explanatory 
power different quantities of temperature and precipitation 
may add to phylogenetic studies. The high correlations between 
means, SDs and predictabilities we found coincide with a recent 
study on a similar global meteorological database (WorldClim), 
which showed that 5 synthetic variables are sufficient to cap-
ture most of the variation in the entire dataset of 19 variables 
(Dinnage  2023). Similarly, these correlations have been no-
ticed for a long time in the biogeography and other literature 
(Birks 1996; Heikkinen 1996; Guisan and Zimmermann 2000; 
Pendergrass et  al.  2017; Harp and Horton  2023). Indeed, high 
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levels of interdependence between explanatory variables affect 
the interpretability of multiple regression models and do not 
violate the assumptions behind multiple regression (Morrissey 
and Ruxton 2018). Nevertheless, in our single case study with re-
analysing published dataset, we found VIF coefficients quickly 
increase with including more climatic quantities. These results 
suggest using multiple regression to figure out the key contrib-
uting climatic factor to biological adaptation can be challenging.

It is important to note that we are not discouraging the use of 
predictability, but rather highlighting the complex nature of dif-
ferent predictability measures, and the potential gaps between 
predictability and biological processes. In our statistical analyses 
(Section 4), we employed the perspective that mean is a more fun-
damental property than SD, and both are more fundamental than 
predictability. This perspective was derived from the moments of 
distribution (as well as the ease of measurement). Another reason 
is the mean is less versatile than variability, which can be mea-
sured in SD, CV and variance; and predictability is an even more 
versatile metric (Figure 2). Indeed, if a biologist can justify that a 
certain type of predictability should be the primary contributor 
to a biological process, they might take a different plan to set up 
the statistical models and reach a slightly different conclusion. 
However, changing the sequence of adding different properties 
of a single climatic variable would not change the conclusion: 
they have a high overlap to which they can explain the variance 
of cooperative breeding (Conclusion 3). In addition, although 
our analyses employed three distinct entropy metrics and found 
these entropies are insufficient in adding more information to the 
statistical analyses, it is possible that other entropy metrics would 
work, or the ones we used can be important in other datasets.

5.4   |   How Should We Move Forward?

The most useful methodology can depend on the hypothesis being 
tested, or if an analysis is more exploratory. With a specific hy-
pothesis, we suggest constructing phylogenetic regression mod-
els with a minimal number of explanatory variables, and then 
compare the hypothesis model, which contains the variable(s) of 
interest, against alternative models. For example, if a study aims 
to test whether the periodicity effects of yearly environmental cy-
cles are fundamental for a behavioural strategy, then the variable 
of interest could be Colwell's predictabilities (including constancy 
and contingency; Section  5.1). In contrast, if a macroecology 
study is designed to test the climatic variability hypothesis, then 
the variable of interest could be the SD or maximal difference in 
temperature (Janzen 1967; Quintero and Wiens 2013; Gutiérrez-
Pesquera et al. 2016; Polato et al. 2018; Chiono and Paul 2023). In 
addition, if variation in precipitation is more biologically relevant 
than temperature variability for cooperative breeding, then com-
paring models that include only precipitation SD may help clar-
ify its independent effect (Rubenstein and Lovette 2007; Jetz and 
Rubenstein 2011; Cornwallis et al. 2017). Alternatively, if a study 
aims to test the temporal scale effects, such as diurnal thermal 
range and seasonal thermal range being hypothesised to have op-
posite effects on natural selection—because the duration of envi-
ronmental variation can change the ecological dynamics—then 
different aspects of thermal variability could be crucial (Chan 
et al. 2016; Liu et al. 2021). If the regression model with the vari-
able(s) of interest is significantly better than alternative models, 

which should have similar numbers of comparable explanatory 
variables, then it would support the focal hypothesis.

If there is no specific hypothesis to test, regression models with 
PCs could be a better option; though it is important to be cau-
tious about the wording when referring to PCs. Phylogenetic 
PCA retains great interpretability even when the model con-
tains numerous climatic quantities (Botero et al. 2014; Fristoe 
et  al.  2017; Griesser et  al.  2017; Firman et  al.  2020). For in-
stance, it could tell how much variance is explained by each 
PC, and with acknowledging the background assumptions, one 
could use the PCA loadings to figure out the key factors (Chong 
et al. 2018). However, one should be careful when inferring the 
biological meaning of PCs and avoid labelling these PCs with 
terms like ‘predictable environment’. This is because the process 
of making PCs does not contain any biological insight. Another 
way to deal with multicollinearity is through machine learning 
tools, such as random forest models. These methods usually do 
not make strong prior assumptions and are excellent in coping 
with non-linear relationships, as well as correlations between 
predictors (sometimes referred to as features). Nevertheless, 
there are currently no available tools or established pipelines to 
construct a phylogenetic random forest model. Our attempts in 
Supporting Information S1: Section 5 used one categorical trait 
to represent phylogenetic groups, while alternative methods 
include but are not limited to the eigenvectors from the phylo-
genetic variance–covariance matrix and the PCs of the phyloge-
netic distance matrix. Yet, these methods all create additional 
predictors. In conclusion, while giving explicit and clear defini-
tions of the meaning of predictable climatic conditions in each 
study is the best way to facilitate communication, our findings 
also highlight the need of developing techniques to examine 
predictability from the organisms' perspective.
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