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Mycorrhizal fungi are ecosystem engineers that sustain plant life and help regulate

Earth’s biogeochemical cycles'. However, in contrast to plants and animals, the
global distribution of mycorrhizal fungal biodiversity is largely unknown, which limits
our ability to monitor and protect key underground ecosystems*®, Here we trained
machine-learning algorithms on a global dataset of 25,000 geolocated soil samples
comprising >2.8 billion fungal DNA sequences. We predicted arbuscular mycorrhizal
and ectomycorrhizal fungal richness and rarity across terrestrial ecosystems. On the
basis of these predictions, we generated high-resolution, global-scale maps and
identified key reservoirs of highly diverse and endemic mycorrhizal communities.
Intersecting protected areas with mycorrhizal hotspots indicated that less than10%
of predicted mycorrhizal richness hotspots currently exist in protected areas. Our
results describe alargely hidden component of Earth’s underground ecosystems and
can help identify conservation priorities, set monitoring benchmarks and create
specific restoration plans and land-management strategies.

Mycorrhizal fungi form nutritional symbioses with >80% of plant
species and build extensive underground hyphal networks that can
constitute >30% of the living microbial biomass of soils'. The fungi use
their networksto forage in the soil for phosphorus, nitrogen and trace
elements, and receive carbon from plant root systems in return. The
diversity and activity of these fungal communitiesis fundamental tothe
functioning of Earth’s terrestrial ecosystems, with an estimated 3.6 bil-
lion tons of carbon annually allocated through plants to mycorrhizal
fungi?®. However, despite their importance, our understanding of the
global distribution of mycorrhizal fungal biodiversity lags far behind
plants and animals. As a result, it is difficult to develop appropriate
measures to protect these organisms and the integrity of their sym-
biotic partnerships*>.

Over the past decade, the emergence of comprehensive, large-scale
molecular datasets on belowground fungi have made it possible to
establishglobal baselines of mycorrhizal fungal biogeography® 8. These
efforts have helped reveal the dominance of two types of mycorrhizal
symbionts spread across Earth’s terrestrial biomes: ectomycorrhizal
(EcM) fungi and arbuscular mycorrhizal (AM) fungi. These fungal types
differ in their physiology, symbiotic behaviour and contribution to
carbon cycling®®. Although only about 2% of terrestrial plant species

depend on EcM associations, these host species constitute >25% of
global vegetation areaand dominate in high-latitude forests™. AM fungi
formassociations with around 80% of plant species™ and dominate in
tropical forests, grasslands and croplands globally. A third type—ericoid
mycorrhizal (ErM) fungi—are common in high-elevation and high-
latitude ecosystems but are rarer globally™. The scarcity of ErM fungi
inlarge-scale fungal datasets has left a sizable gap in our understand-
ing of their global diversity patterns or conservation opportunities.
Previous work has used plant genus as a proxy of mycorrhizal type to
reveal fundamentalinsights into the distributions and functions of myc-
orrhizal symbioses™ ™. However, efforts to explore mycorrhizal fungal
biogeography from direct microbial observations, with methods such
as DNA-based surveys of soil samples” ™, have shown that aboveground
and belowground biodiversity patterns are often not correlated®. This
finding means that patterns of plant communities may not accurately
reflect distributions of mycorrhizal diversity belowground. Moreover,
our ability toidentify the scale of this mismatch s limited by geographi-
cal biases in the locations of mycorrhizal samples used for predictive
modelling. Such large data gaps inevitably result in extensive model
extrapolationinto untrained environmental space?, whichis particu-
larly unreliableinunder-sampled tropical regions where AM fungi are
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Fig.1|Samplelocations and mycorrhizal richness trends by biome.

a,b, Distribution of sites and richness estimates for AM fungi (a) and EcM

fungi (b). VT were created from SSU sequences for AM fungi, and 97% similar
OTUswere created from ITS sequences and assigned to EcM fungi. Mycorrhizal
richness patternsacrossterrestrialbiomes areshownin boxplots (mangroves,
flooded grasslands and rock and ice biomes not shown owing to low numbers
ofsamplesinboth datasets). Global distributions of estimated richness are

likely to dominate. Generating high-resolution global distributions of
mycorrhizal fungal diversity from direct observations—and quantifying
the extent of model uncertainty?—is essential to guide future conserva-
tion planning’. Protecting mycorrhizal fungal diversity will help avoid
specieslossacross other taxonomic groups and help maintain critical
ecosystem functions (for example, carbon sequestration) for realizing
nature-based climate mitigation strategies*’. To address these chal-
lenges, we took the following steps: (1) built machine-learning models to
create high-resolution (1 km?) spatial predictions of mycorrhizal fungal
richness and endemicity (rarity-weighted richness) at the global scale;
(2) identified mycorrhizal fungal richness and endemism hotspots and
assessed the extent of their current environmental protections; and
(3) characterized spatial uncertainty and data limitations.

Calculating global fungal richness

First, we explored the distribution and range of the training data (Fig.1).
This dataset consisted of a globally distributed collection of nearly
25,000 soil samples containing >2.8 billion fungal DNA sequences
from130 countries compiled in the GlobalFungi, GlobalAMFungi and
Global Soil Mycobiome consortium databases® &, These are the largest
datasets of fungal internal transcribed spacer (ITS) and small subunit
(SSU) rRNA amplicon sequences assembled so far. These sequences
were analysed using virtual taxa (VT) for AM fungi and 97% similar
operational taxonomic units (OTUs) for EcM fungi. With these data,
we estimated AM and EcM fungal richness using a rarefaction and
extrapolation approach, and rarity-weighted richness (hereafter ‘rar-
ity’; Extended DataFig.1), whichis ametric of relative endemismused
to guide conservation priorities®.

Acrossboth AM and EcM datasets, temperate forests were the most
sampled biomes (32-61% of all samples), and mangroves and flooded
grasslands were the least sampled biomes (0.1% of all samples). There
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shownindensity curves above biome-level boxplots. Boxplotsindicate the
median (centreline), firstand third quartiles (lower and upper box edges) and
1.5x theinterquartile range (IQR) (box whiskers). EcM richness data are shown
assquare-root transformed for visualization. Richness estimates were calculated
using ararefaction and extrapolation approach thatincorporates sequencing
depth per sample. Points shown here are allsamples that passed quality-control
checks and used as training data.

were only afew AM fungal samples from desert and tundra biomes, and
few EcM fungal samples from tropical dry forests and tropical conifer
forests. Compared with other biomes, soil samples from montane grass-
lands, tropical conifer forests and temperate broadleaf forests showed
the highest AM fungal richness estimates (Fig. 1a). Similarly, montane
grasslands had the greatest AM fungal rarity estimates, followed by
Mediterranean forests and tropical grasslands with the next highest
in AM fungal endemism levels (Extended Data Fig. 1a). For EcM fungi,
samples from coniferous forests (tropical and temperate) and temper-
atebroadleaf forests had the highest richness estimates (Fig.1b). ECM
fungal endemicity was also highestin tropical conifer forests, whereas
tundra and Mediterranean forests showed a greater concentration
of rare EcM fungi than temperate forests (Extended Data Fig. 1b). We
used these datasets to train random forest machine-learning models
to predictglobal AM and EcM fungal richness and endemism patterns.

We wanted to know whether mycorrhizal fungi show clear global
diversity patterns like plants and animals. To that end, we used maps of
predicted richness to plot meanrichness and rarity across latitudes. Pre-
dicted AM fungal richness was highestin ecosystems near the equator
and gradually declined towards the poles. This result was inagreement
with the classical latitude diversity gradient hypothesis observed across
many taxa®** (Fig. 2a). By contrast, predicted EcM fungal richness was
lowest near the equator and showed more species-rich communities
across northern latitudes and in southern regions of South America
and Australia, which created an inverse latitudinal diversity gradient
(Fig. 2b and Extended Data Fig. 2). Latitudinal patterns of AM fungal
endemism showed a similar pattern as AM richness, but EcM fungal
endemism had a moderate increase near the equator compared with
EcMrichness (Fig. 3). Theserelationships probably emerged through
acomplex interplay of host vegetation'*?, degree of host specific-
ity and plant-soil nutrient economies?®?, Notably, these analyses
highlighted that plant diversity is not a straightforward indicator for

Nature | Vol 645 | 11 September 2025 | 415



Article

a Bl Masked region 7% High extrapolation — Latitude mean b
--- Trend line
TG
60° N-| S
¥
30°N 30° N+ 30°N
8
2
" E . AM r\cgnless .
0 Predicted AM fungal 0°7 oo t’ 0
richness per 100 m? s 3
PP £ )
30°S e 30° S+ § 0s- g 30°S
Doz 1
) 0.02 0.04 0.06
120° W 60° W 0° 60° E 120°E 0 20 40 60 Uncertainty 60° W 0° 60° E 120°E
Mean AM fungal
richness
c d
- s
-4 Sy
30°N 3 30°N
EcM richness
0° model 0°
Predicted EcM fungal )
richness per 100 m? s
—_—) £ 09 .
S & » O 3
30°S P A éoaf cil 30°S
%
Wor- 3
-
0.03 0.06 0.09
120°W 60° W 0° 60° E 120° E 0 30 60 60° W 0° 60°E 120°E

Uncertainty

Mean EcM fungal
richness

Fig.2|Global predictions and latitudinal trends of mycorrhizal fungal
richness. a,c, Richness maps show the predicted number of AM fungal VT (a)
and EcM fungal OTUs (c) per 100 m?(pixels approximately 1km?). Predicted
richness valuesare cappedat45VT per100 m?(AM) and 70 OTUs per 100 m?
(EcM) for visualization. Crosshatches are superimposed over areas that are
underrepresented by the training data (highly extrapolated) where model
predictions should beinterpreted with caution. Plots show meanrichness
trends acrosslatitude (shaded areais +2s.e.m.).b,d, Bivariate maps show the

mycorrhizal fungal biodiversity at global scales?*?. This finding is
a problem for the assumption that Earth’s mycorrhizal fungi will be
automatically protected under new biodiversity initiatives, as current
conservation policy tends to rely on plant and animal diversity metrics
for determining priority areas and ecosystem value>*°,

Mycorrhizal fungal hotspots

If plant diversity is not a direct indicator of mycorrhizal fungal diver-
sity, then protecting underground biodiversity requires explicit con-
sideration that is based on the development of new high-resolution
identification and monitoring approaches. For effective underground
conservation, the identification of global hotspots of mycorrhizal
biodiversity is particularly important. We therefore used our spatial
predictions to locate areas of highly species-rich and endemic myc-
orrhizal fungal communities (hotspots). Hotspots were defined as
pixels in the upper 95th percentile of predicted richness and rarity
values globally, as per previous definitions?>., This analysis resulted
in richness cut-off values of 39.9 VT for AM fungi and 60.0 OTUs for
EcM fungi, and unitless rarity cut-off values of 0.24 for AM fungi and
1.27 for EcM fungi.

Samplingbias can affect the relative rarity of species, which means it
isimportant to determine whether predicted endemism hotspots are
biologically real or an artefact of uneven global inventories of mycor-
rhizal fungi. We trained the AM and EcM fungal rarity machine-learning
models with additional covariate layers of global sampling intensity.
These layers were created using kernel density interpolation from
sample coordinates in the SSU and ITS training datasets (Methods).
Thisapproachenabled us to compare empirical rarity predictions under
currentsampling intensities against predictions that simulated univer-
sally ‘high-sampling’ scenarios, as previously reported®. For AM fungi,
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combination of pixel-level uncertainty (orange gradient) and extrapolation
(purplegradient) of AM (b) and EcM (d) fungirichness predictions. Uncertainty
ismeasured as the coefficient of variation across n =100 bootstrapped model
predictions. Extrapolation reflects the degree of environmental difference and
geographical distance from samplesin the training dataset. Histograms on the
charts show the frequency of pixelsin different uncertainty and extrapolation
levels visualized here. Masked areas (grey) are sparsely vegetated zones and
denseurbanareasbased on global land-cover data.

there was substantial overlap between the empirical and high-sampling
rarity hotspot predictions (Extended Data Fig. 3a), which indicated
that current sampling efforts are generally capturing the distribution
of endemic AM fungal taxa. However, there was large divergence in the
empirical and high-sampling predictions of EcM rarity hotspots, par-
ticularlyintundraandtropical forest biomes (Extended Data Fig. 3b).
This result suggests that increasing sampling effortsin these habitats
will probably reveal new or overlooked hotspots of rare and endemic
EcM fungi. For both mycorrhizal types, we used the high-sampling
predictions for subsequent spatial analyses.

We predicted major hotspots of AM fungal richness and endemic-
ity across savannas of the Brazilian Cerrado, tropical forests across
Southeast Asiaand Guinean forestsin West Africa (Figs.2aand 4). Our
models showed that these areas may contain more than 45 AM fungal
species (VT) per 100 m?. Species-rich communities of AM fungi were
likewise predicted in parts of East and North Chinain ecosystems that
arerapidly undergoing significant anthropogenic land-use changes®.
Smaller regions, like the montane grasslands in Ethiopia, dry forests
throughout Central America and Mediterranean woodland and scrub-
land in Europe, were also predicted to contain highly diverse collections
of AM fungi (Fig. 2a). However, these areas were not predicted to be
endemicity hotspots. Instead, AM fungal endemicity hotspots were
predicted to occur in tropical and subtropical forests in the Congo
basin and eastern Amazon basin (Figs. 3a and 4). Although montane
grasslands had the most species-rich AM fungal samples in the model
training data, this biome did not emerge as a substantial AM fungal
richness or rarity hotspot at the global level. This result may be due
to the low number of samples from these habitats or the extent and
location of montane grasslands compared with other biomes.

We predicted EcM fungal richness hotspots throughout northern for-
estecosystems (Figs.2band 5). Theseincluded much of the Siberianand
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Fig.3|Global predictions and latitudinal trends of mycorrhizal fungal
endemism. a,c, Endemism maps show the predicted rarity-weighted richness
of AM fungal VT (a) and EcM fungal OTUs (c) per 100 m? (pixels approximately
1km?). Rarity-weighted richness is a unitless metric, and predicted values are
cappedat0.26 (AM) and 1.5 (EcM) for visualization. These spatial predictions
reflect the simulated high-sampling scenarios to limit unequal sampling
effectsonrarity patterns. Crosshatches are superimposed over areas that
areunderrepresented by the training data (highly extrapolated) where
model predictions should beinterpreted with caution. Plots show meanrarity
trends across latitude (shaded areais +2 s.e.m.).b,d, Bivariate maps show the

Canadian boreal forest regions, temperate coniferous forests across
Western United States and Canadian mountain ranges and temperate
broadleaf and mixed forests in Central Europe and the North Ameri-
can Great Lakes region. We predicted that these places could have
underground ecosystems averaging >100 EcM fungal species (OTUs)
per 100 m?. However, most of these northern forest biomes were not
identified as EcM fungal endemism hotspots. Instead, we predicted
that tundra ecosystems contained the greatest EcM rarity levels at
high latitudes (Figs. 3b and 5). We also identified areas of global EcM
diversity hotspots—especially rarity hotspots—in tropical biomes,
suchastropical moist forestsin China’s Yunnan-Guizhou plateau and
mainland Southeast Asia, montane rainforests across Indonesia and
Guianan highland forests in Venezuela. Of particular note are the pre-
dicted EcM fungal endemism hotspots in tropical conifer forests in
Central America that contain the highest richness of EcM host plant
lineages**. EcM fungal richness and rarity hotspots in the Southern
hemisphere were predicted to be concentrated primarily inthe Andes
Mountain range and the temperate mixed forests in southern Chile,
the east coast of Australiaand New Zealand (that s, all habitats of the
Nothofagaceae plant family).

Mycorrhizal hotspot protections

To assess the extent to which mycorrhizal diversity is currently pro-
tected, we overlaid mycorrhizal hotspot pixels with protected areas
defined by the World Database of Protected Areas®. We then calculated
the total extent to which the hotspots were within current protected
areadelineations. This analysis revealed that the centres of mycorrhizal
biodiversity were unequally distributed across biomes; nearly all had

combination of pixel-level uncertainty (orange gradient) and extrapolation
(purplegradient) of AM (b) and EcM (d) fungirarity-weighted richness
predictions. Uncertainty is measured as the coefficient of variation across
n=100bootstrapped model predictions. Extrapolationreflects the degree
of environmental difference and geographical distance from samplesinthe
training dataset. Histograms on the charts show the frequency of pixelsin
different uncertainty and extrapolation levels visualized here. Masked areas
(grey) aresparsely vegetated zones and dense urban areas based on global
land-cover data.

low protective coverage, and the management stringencies for pro-
tected hotspots differed among the mycorrhizal types (Figs. 4 and 5).
Globally, we predicted that only 9.5% of mycorrhizal richness hotspots
occurinprotected habitats, including 5.1% (about 280,000 km?) of AM
hotspotsand13.9% (around 756,000 km?) of EcM hotspots. Mycorrhizal
rarity hotspots were protected at roughly twice the rate (22.9% over-
all), with 22.6% (about 1.2 million km?) and 23.2% (around 1.3 million
km?) of AM and EcM fungal rarity hotspots overlapping with protected
areas, respectively. This result is probably because high levels of end-
emism often result from geographical barriers that cause insularity.
Moreover, protected areas are more frequently established inremote,
hard-to-access areas where human pressures are anticipated to remain
low, regardless of conservation action®.

The protected areas considered here cover roughly 16 million km?
and contain everything fromstrict nature reserves to managed resource
areas (International Union for Conservation of Nature (IUCN) man-
agement categories [-VI and not applicable (NA) or undefined (NA/
undefined)). Analyses of hotspot protections by management category
revealed that most protected AM fungal hotspots arein the least-strictly
preserved habitats (Fig. 4). Specifically, 76.4% (richness) and 72.8%
(rarity) of protected AM hotspots are under categories V, Vlor NA/unde-
fined. By contrast, protected EcM fungal hotspots are mostly under
the strictest preservation levels, including nearly half of protected
EcMrichness and rarity hotspot areain IUCN categories I-IlI (Fig. 5).

Atthe continentscale, predicted mycorrhizal fungal hotspotsin Asia
have the lowest protection for both AM fungi (richness = 2.2% and rar-
ity =7.5% protected) and EcM fungi (richness = 11.3% and rarity = 17.2%
protected), even though these hotspots are concentrated in different
biomes for each mycorrhizal type (tropical moist forests compared
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Fig.4|Arbuscular mycorrhizal fungal hotspots and global protected areas.
Predicted richness and endemism hotspots (95th percentile of predictions) for
AM fungi. Coloured areas on the map show richness hotspots (green), rarity
hotspots (purple) and the overlap of richness and rarity hotspots (yellow).
Black areasindicate non-hotspots. Bar graphs show the total hotspot size and

with boreal and tundra systems; see the Zenodo archive (https://doi.
org/10.5281/zenodo.14871588)* for continent-level results). Europe has
the highest protected AM fungal richness hotspots (19.6% protected),
which we predicted to occur mainly in Mediterranean forests across
the continent. Australiaand Oceania showed the largest protected area
overlap with AM fungal rarity hotspots (35.7% protected), primarily in
tropical grasslands. Predicted EcM fungal richness hotspots are also the
most well protected in Australia and Oceania (40.2% protected), which
largely occur throughout temperate broadleaf forests. Both Australia
and Oceaniaand South America have the largest protected area overlap
with predicted EcM fungal endemism hotspots (46% protected).

Environmental predictors

Given the distinct hotspot locations and latitude—-diversity relation-
ships, we used shapley additive explanations (SHAP) to analyse which
ofthe 24 environmental covariates were the mostimportant predictors
of mycorrhizal fungal richness and rarity. This method quantifies the
additive contribution of each feature of a machine-learning model
(for example, temperature and rainfall) on its predicted values, as
opposed to measuring featureimportance based on changes inmodel
performance®. Therefore, SHAP is a useful method for interpreting the
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magnitude and directionality of predictors in our machine-learning
models with respect to changes in mycorrhizal diversity. Moreover, in
exploratory tests, theinclusion of spatial predictors (Moran Eigenvec-
tor layers) generally did not change the identity or order of important
variables in either of the richness models. This result confirmed that
the rankings of the most important predictors of mycorrhizal fungal
richness are unlikely to be biased by spatially autocorrelated processes
notincludedin the model (Supplementary Figs.1and 2).

Among the climate features, temperature (annual mean tempera-
ture and maximum temperature of warmest month) was generally
the mostimportant climatic predictor across all AM and ECM models
(Extended Data Figs. 4 and 5). By calculating mean absolute SHAP
values, these variables were two to five times more influential than
other predictors, contributing +0.07 VT to each AM fungal richness
prediction and +£0.11 OTUs to each EcM fungal richness prediction
on average. Specifically, higher temperatures predicted greater AM
fungal richness and lower EcM fungal richness. Potential evapotran-
spiration was also an influential climate predictor for rarity models,
with drier areas associated with higher AM and EcM fungal endemic-
ity (Extended Data Figs. 4 and 5). However, the evapotranspiration
trends were opposite for EcM diversity metrics, whereby drier areas
were associated with lower EcM fungal richness. Using paleoclimate
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EcM fungi. Coloured areas on the map show richness hotspots (green), rarity
hotspots (purple) and the overlap of richness and rarity hotspots (yellow).
Black areasindicate non-hotspots. Bar graphs show the total hotspot size and

data, EcM fungal rarity was strongly and positively associated with cli-
matic stability since the Pliocene (Extended Data Fig. 5; mean absolute
SHAP value of +0.04 OTUs), which indicates that current endemicity
patterns reflect the evolutionary history of EcM fungal symbioses
over millions of years. These findings add to recent work showing a
link between climate and soil fungi at global scales”’. Moreover, the
results probably reflect joint climate tolerances of mycorrhizal fungi
and their plant hosts, as well as climatic controls on soil organic matter
decomposition!>5172839,

Theimportance of climatic controlsin predicting mycorrhizal diver-
sity was further supported by strong links between fungal richness and
soil organic carbon. Greater soil organic carbon was associated with
higher EcM richness and lower AMrichness (Extended DataFig. 4; mean
absolute SHAP values of +0.11 OTUs and +0.08 VT, respectively). This
result is consistent with past findings that soil organic carbon stocks
are positively associated with EcM plant dominance!**° and probably
relates to metabolic differences between AM and EcM fungi in enzy-
matic capabilities and plant host litter chemistry®*. In contrast to EcM,
AM fungalrichness peakedin the tropics, where climate and other biotic
conditions favour rapid mineralization of plant litter that may drive AM
fungal dominance over EcM symbiosis. Soil organic carbon was not
among the top 10 mostimportant predictors of ECM fungal endemism
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different IUCN management categories (I, most strictly preserved habitats;
NA, unassigned category). The dashed line at 30% hotspot area protected
reflects the ambitions of 30 x 30 target goals under the Kunming-Montreal
Global Biodiversity Framework.

(mean absolute SHAP value of +0.01 OTUs; Extended Data Fig. 5), which
helps explain why we predicted substantial EcM rarity hotspots across
tropical forests with generally lower soil carbon stocks thantemperate
or boreal forests'. Notably, soil pH (as a geospatial covariate layer)
wasnotamong the mostimportant predictorsidentifiedin AM or ECM
models, despite past work describingitsimportanceinshaping overall
soil fungal diversity patterns and AM fungal niche traits'**%,

In addition to climate, we were interested in testing how human
activities affect diversity patterns. Given that 95% of the Earth’s ter-
restrial surface is affected by some level of human modification®, we
used the summed percentage of cultivated and managed areas and
urban and built-up habitats to measure anthropogenic land-cover
(dense urban centres were masked from predictions; Methods).
Anthropogenic land-cover emerged as an important and positive
predictor of AM fungal richness (mean absolute SHAP value of +0.07
VT; Extended Data Fig. 4). Although sampling bias in the SSU data-
set from human-modified habitats may be partially responsible, dis-
turbed ecosystems also tend to contain more ruderal, wind-dispersed
AM fungal species that can increase local species richness at the
expense of homogenizing regional-scale species composition***
Human-mediated land modification was a less important feature in
the AM fungal rarity model (mean absolute SHAP value of +0.004 VT;
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Extended Data Fig. 5) thanin the AM fungal richness model, which could
beinterpreted as supporting the regional homogenization hypothesis.
Anopen questionis whether changesin AM fungal-associated vegeta-
tion, such as new crops and exotic plants, create more opportunities
for diverse plant-AM fungal interactions to occur***, Different types
of humandisturbance are likely to have different effects on AM fungal
diversity, and future research on AM fungi in human-modified habi-
tats would benefit from analyses with more specific spatial layers on
anthropogenic landscapes.

Aboveground plantbiomass was the top predictor for ECM richness
and rarity models (richness mean absolute SHAP value 0of +0.13 OTUs;
rarity mean absolute SHAP value of +0.05), with higher biomass posi-
tively predicting higher EcM fungal richness and rarity. Ingeneral, this
resultreflects the dominance of ECM fungi in forest ecosystems, includ-
ing estimates that 60% of all tree stems on Earth form EcM symbioses®.
Elevation and slope were also among the most important predictors
of EcM rarity (mean absolute SHAP values of +0.04 and +0.03, respec-
tively; Extended DataFig. 5), and we predicted hotspots of endemic EcM
fungal communities across mountainous terrain in the Andes, Sierra
Madre, Sierra Nevada and Cascade Mountain ranges (Fig. 5). For EcM
fungi, aboveground biomass and topography may be more reliable
indicators of richness and rarity than plant diversity. This finding is
encouraging given that remote-sensing tools are increasingly able to
detect complex forest structures of significant ecological value for
protection®. Our results further underscore the critical planetary ben-
efits of high-biomass forests that are supported by and foster endemic,
species-rich EcM fungal communities.

Uncertainty analyses

For spatial predictions of biodiversity to be useful in conservation
policy, it isimportant to measure and communicate the uncertainty
associated with each prediction?. This is especially true for microbial
biodiversity predictions that are more challenging to verify compared to
plantand animal distributions*®. To do so, we calculated two pixel-level
metrics of uncertainty (Methods). In brief, we defined statistical uncer-
tainty as the coefficient of variation in the predictions across n =100
bootstrap samples of the training data to create a confidence interval
around the prediction mean of each pixel. Next, we quantified extrapo-
lation as the extent to which a given pixel departs from the sampling
locations and the range of environmental conditions inthe training data.

Theuncertainty range of richness models were similar among myc-
orrhizal types. The coefficient of variation (the relative dispersion of
pixel values around predicted means) ranged mostly between 0 and
0.06 for AM and EcM richness models (Fig. 2). AM fungal rarity mod-
els showed slightly higher uncertainties than for EcM fungal rarity
interpolations (0.10-0.20 coefficient of variation; Fig. 3). This result
isprobably caused by differencesin the characteristics of AMand EcM
fungithat may affect local-scale sample variation or species detection
(for example, host specificity and dispersal ability) and differences in
the underlying datasets (for example, sample sizes and coverage across
environmental gradients). The predictive accuracy of both fungal rich-
ness models was comparable (random cross-validation R? = 0.61for AM
and R*=0.63 for EcM), which indicated that both spatial predictions
arerobust despite the differencesin training dataset size. Spatial pat-
terns of uncertainty were different for both mycorrhizal types and
diversity metrics (Extended DataFig. 6). For example, EcM fungal rich-
ness models showed approximately double the uncertainty in desert,
grassland and tropical forest biomes compared with AM models. AM
fungal model uncertainties were highest in areas with low predicted
richness, such as desert and tundra regions (Fig. 2b).

Locations with high extrapolation reflected poor representationin
the model predictors and were primarily in regions that are consistently
underrepresented in global soil biodiversity data* (Extended Data
Figs. 7 and 8). For AM fungi, areas that require greater extrapolation
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included northerniIndia, the Tibetan plateau, Indonesia and parts of the
Amazon rainforest (Figs.2and 3). Therefore, extra cautionis required
when examining AM fungal predictions in these regions. Overall, the
EcM predictions were less dependent on model extrapolation because
they were built fromalarger training dataset (over five times more ITS
samples distributed across awider range of environmental conditions
than the SSU samples used for AM fungi). However, there were small
regions with ahigh degree of ECM model extrapolationinSub-Saharan
Africa, northern Canada and Southeast Asia (Figs. 2 and 3).

Important critiques of machine-learning geospatial approaches have
beenrecently noted?. We performed the following actions to address
these concerns: (1) accounted for spatial autocorrelation variables in
the model (Supplementary Figs.1and 2); (2) created spatial blocks to
limit the distance between sample and prediction locations for addi-
tional cross-validation (Supplementary Fig.3); and (3) provided clear
dataon predictionuncertainty (Figs.2 and 3 and Extended Data Figs. 7
and 8). Moreover, we conducted multiple cross-validation procedures
asthereis currently no consensus on best practices for validating spa-
tial models and measuring their inaccuracies (Methods). Overall, our
models performed similar to (or better than) the accuracy of recent
machine-learning predictive mapping approaches used for other soil
organisms (Methods and Extended Data Fig. 9).

Conclusions

Our high-resolution, global-scale maps of AM and EcM fungal diversity
suggest that <10% of mycorrhizal richness hotspots currently exist in
protected areas. The same analysis for non-fungal taxa showed that
both plantand animalbiodiversity hotspots are much better protected.
Replicating the analysis with spatial data of other taxonomic groups
showed roughly 3-fold higher protection of richness hotspot areas
for vascular plants (27% protected), trees (34% protected), ants (28%
protected) and vertebrates (33-41% protected for amphibians, birds,
mammals and reptiles), whichis probably because threatened species
in these groups drive most conservation interventions®*°. Endemic
mycorrhizal fungi may be faring better: overall 22.9% of predicted rarity
hotspotareas overlapped with protected areas, similar to the protection
coverage of vertebrate rarity centres (19-21% protected for amphib-
ians, birds, mammals and reptiles). To fully realize the 30 x 30 target
goals of protecting Earth’s biodiversity under the Kunming-Montreal
Global Biodiversity Framework, itis necessary to identify underground
conservation priorities, set monitoring benchmarks and create specific
restoration plans®. For example, our data can be used to help develop
land-management strategies to protect and maintain mycorrhizal diver-
sity reservoirs®, including identifying soil-management practices devel-
oped over millennia by local populations®’, We also recommend that
any use of these predictive biodiversity mapsin aspecificlocale should
be cross-referenced with the model uncertainty and extrapolation
layers in the same area to maximize positive conservation outcomes®.

Ourresultsshould beseen as afirst step towards understanding the
baseline protected levels of Earth’s mycorrhizal fungal diversity. Over-
laying protected areas onbiodiversity hotspots does not tell us how suc-
cessful these conservation strategies are at maintaining orimproving
mycorrhizal fungal biodiversity. Because IUCN management categories
varyinstrictness of habitat preservation, itisalsoimportant to analyse
hotspot protections onthe basis of these management categories, few
of which are entirely free of human pressures. A critical next step will
be to measure the effectiveness of protected areas to mitigate fungal
biodiversity loss, as has been done using counterfactual analysis for
other organisms®. This strategy will help determine which protected
area conditions and objectives best deliver conservation benefits to
mycorrhizal fungi—such as focusing on rare or threatened species,
unique ecosystems and their entire communities, vital ecosystem
services and/or locations of cultural and social significance. Conser-
vation efforts will also be more effective by continuously monitoring



mycorrhizal fungi, as they have known vulnerabilities to environmental
change and disturbance'*?, and there is a need to track their recovery
following conservation and restoration actions.

Owingtoinsufficient data, we were unable to robustly model ErM or
orchid mycorrhizal fungal richness patterns. Forinstance, the average
ErM fungal richness per sample was 0.6 species, and <3% of samples
contained more than 4 ErM fungal species. These are both important
fungal symbioses to understand in a global context because of their
unique contributions to plant ecology and ecosystem functions™. Addi-
tional sequencing projects and data-mining efforts will facilitate large-
scale analyses of these mycorrhizal types. A second issue is that using
SSU data to understand the biogeography of AM fungal richness and
rarity may be problematic owing to overly conservative species defini-
tions that could underrepresent the true diversity of this mycorrhizal
type (Methods). AM fungi have a unique genetic organization with
highintragenomic variation that makes their sequencing and species
definition more difficult than for EcM fungi, and only 332 AM fungal
species have been formally described®. Alternative approaches, such
aslong-read sequencing of both environmental AM fungi and culture
collections and the use of multiple metabarcoding target regions, may
provide additional insights into the definition and distribution of AM
fungal biodiversity®.

Although our models performed similar to (or better than) those
for other soil organisms (for example, nematodes, springtails and
earthworms; Methods), they are still an imperfect representation of
mycorrhizal patternsin nature. In particular,1 km?is arelatively coarse
spatial scale to quantify the average soil mycorrhizal richness expected
per 100 m? There can be large landscape heterogeneity in a pixel of
thissize, and soil fungal samplingis usually restricted to asmaller col-
lection grid and sequencing <1 g of soil. Currently, 1 km?is the highest
spatial resolution possible for making reliable global predictions given
the coverage of relevant covariate layers, but this technical limitation
will be overcome as more global environmental datasets are created at
250-mand 30-mresolution, closer to the scale of field-sampling meth-
ods. We are also actively exploring how much within-pixel variation
affects model accuracy as part of an ongoing effort to independently
ground-truth these spatial predictions. Ground-truth validation is
particularly important for the following regions: (1) under-sampled
environments poorly represented in the model; (2) regions with high
uncertainty despite good training data coverage; (3) areas with high
landscape-related heterogeneity (for example, steep mountains); and
(4) areas that are particularly vulnerable to rapid climate change and
habitat loss from human activities.

Given the importance of these organisms for the productivity of
ecosystems and the functioning of landscapes, it is surprising that
mycorrhizal diversity remains highly underrepresentedin conservation
agendas. Explicit consideration of mycorrhizal biodiversity hotspots
like those identified here can help direct and implement conserva-
tion strategies towards protecting the most diverse and endangered
underground ecosystems.
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Methods

Fungal data

Fungal occurrence records were generated from the data mining of
published ITS and SSU sequencing studies collected for the GlobalFungi
and GlobalAMFungi databases (see previous studies®® for details) and
the TS region from full-length sequencesin the Global Soil Mycobiome
consortium database’. For EcM occurrences used in this study, we con-
sidered only samples of the ITS2 barcode deposited in the GlobalFungi
datasetas this marker is less biased by length variability compared with
ITS1 (refs. 56,57). Moreover, ITS2 is better represented in the source
database and ITS1samples failed technical validation (see below). In
brief, raw sequences and metadata from 255 ITS studies (representing
the fourthrelease of the GlobalFungi database) were processed using an
established bioinformatic pipeline thatincorporates sequence quality
checks, extraction of full ITS2 fungal regions using ITSx (v.1.1.2)*® and
clustering into OTUs at 97% similarity level with subsequent exclu-
sion of global singletons and chimeric sequences using USEARCH
(v.11.0.0667)*°. We used BLASTN searches against UNITE (v.8.3, released
10.5.2021) to assign putative taxonomy to non-singleton OTUs. Default
BLAST parameters were used, and representative sequences were con-
sidered to belong to the closest BLAST hit genera in the case of >92%
similarity and >95% coverage. Considering that the majority of ECM
fungal genera do not include species belonging to other functional
guilds, we found that these BLAST results criteria were reasonable.
We excluded OTUs represented by sequences with e value >107°°, The
resulting OTU table with taxonomy assignments was compared against
the FungalTraits database (v.1.1) to subset EcM fungi®®.

In early tests, we used the ITS dataset to model AM fungi, but their
low abundance detected from using this target region was leading to
clearly erroneous spatial predictions (for example, zero AM species
predicted in regions known to be dominated by AM vegetation). As a
result, SSU data from the GlobalAMFungi database were used to esti-
mate AM fungal species richness®. In brief, raw sequences and metadata
from 45 SSU studies (representing the first release of the GlobalAM-
Fungi database) were subjected to sequence quality checks, trimming
of the sequences to the V4 region of the SSU and assignment of the
sequences to VT from the MaarjAM database (v.5.6.2019 release)®’.
We also used BLASTN with arequired sequence coverage of >98% and
sequence similarity >97%, based on the most recent release of type
sequences of VT. VT were defined on the basis of phylogenetic group-
ing of SSU sequences at roughly species-level diversity (which may
result in conservative taxonomic designations of AM fungal taxa>>*?).
Molecular identification based on VT is typically used for AM fungal
metabarcoding studies using the SSU region, and OTUs are more tra-
ditionally used for general fungal community sequencing (including
EcM fungi) based onthe ITS region. Both VT and OTUs are commonly
used to approximate species-level assignmentsin sequencing studies
of mycorrhizal fungi. The EcM OTU data used for this analysis is the
result of clustering of GlobalFungi sequences followed by taxonomic
assignment. By contrast, the AMF pipeline results in more conservative
estimates of diversity, as SSU sequences are assigned to representative
VT using stringent BLAST parameters. Thisresults in the discarding of
sequences without agood match to these known VT, whichis necessary
to filter non-fungal sequences (for example, Annelids) but also prob-
ably removes undescribed AM fungal taxa. In total, 2.8 billion fungal
sequences were processed across 24,982 samples, which identified
332 VT of AM fungi (encompassing 86% of defined VT in the MaarjAM
database) and 164,439 EcM fungal OTUs.

Richness estimates

We used analytical estimators for the rarefaction and extrapolation
of species richness to measure the number of mycorrhizal species
(OTUs or VT) in each sample®. This approach creates a sequencing
depth-based rarefaction and extrapolation sampling curve (that is, a

sample-specific species accumulation curve), with diversity estimates
and 95% confidence intervals calculated at curve asymptotes (using
the R package iNEXT®*). Extrapolation end points were computed as
twice the sequencing depth for each sample (default setting). Use of
the rarefaction and extrapolation approach to estimate mycorrhizal
richness enables a robust comparison of mycorrhizal patterns across
studies of multiple sequencing technologies (although variation in
error rates may persist), primer sets and sequencing intensities. The
extrapolated richness estimates here are within similar ranges to past
studies that estimated global diversity of mycorrhizal fungi®***. Moreo-
ver,samplerichness values were highly consistent among 96%, 97% and
98% clustering similarity thresholds (Supplementary Fig. 4).
Weremoved outliersinmycorrhizal richness estimates before spatial
modelling. Two Australian studies with ITS samples from desert and
Mediterranean biomes had unusually high EcM OTU richness esti-
mates and standard deviations (two orders of magnitude higher than
other Australian ecoregions®®®). Moreover, these studies have previ-
ously beenidentified as potentially inaccurate based on arecent data-
base comparison®. All samples from these two studies were removed
(n=2,070). We then filtered samples by biome by removing estimated
richness values that were more than five times the interquartile range
higher than the biome-level median estimate. We only filtered values at
the highest end of the distribution to avoid potentially removing ‘true’
estimates of low or zero mycorrhizal richness at a given location. See
Supplementary Table1forasummary of outliers removed per biome.
We also calculated rarity-weighted richness to estimate the relative
endemism of mycorrhizal fungal communities. Using samples from the
outlier filtered dataset (see above), we created a species-level preva-
lence score as the number of samples for whicheach OTU or VT occurs
andthensummed theinverse prevalence score of all species presentin
eachsample®. This rarity metricis useful for identifying site endemism
orareaswithahigh concentration of rare taxa®. Rarity-weighted rich-
ness was originally used with a geographically unbiased dataset for
which each pixel contained information on bird observations®, but
has since proven useful in other contexts to predict patterns of relative
species endemism®*%, To account for the possibility that geographi-
cally uneven sampling efforts affect fungal species prevalence scores
and biases predictions of fungal endemism, we simulated a global
high-sampling scenario for rarity spatial models (see below).

Geospatial modelling, validation and analysis

Spatial predictions of mycorrhizal fungal richness and rarity were cre-
atedusingarandom forest modelling approach (modified fromref. 69).
We first sampled a collection of >72 global environmental covariates at
eachofthelocationsin the dataset. To reduce overfitting and variance
inflation, we removed highly correlated variables such that the final
set of predictors comprised 24 environmental variables. These con-
tained macroclimatic, soil texture and physicochemical information,
vegetation, radiation and topographical indices and anthropogenic
variables. Details of all predictors, including descriptions, units and
source information, are previously described’ and provided in Supple-
mentary Table 2. Variables describing soil structure and physicochemi-
cal properties were obtained from SoilGrids™, limited to the upper
5 cm of soil. Climate information (that is, mean annual temperature,
annual precipitation, monthly maximum temperature and precipita-
tion seasonality) was obtained from CHELSA”, and climate stability
over palaeoecological timescales was obtained from the Climate Sta-
bility Index”. Spectral vegetation indices (that is, MODIS NPP product
MOD17A3HGF V6.1, averaged annually) were obtained from the Google
Earth Engine Data Catalogue. We used aboveground biomass data
from CDIAC™. We used EarthEnv”” to collect consensus land cover
information (including human development percentage) and eight
topographical layers that capture a broad range of complex terrain
features (for example, geographical isolation). The predicted plant
diversity layer was obtained from a previous study”’. The potential
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evapotranspiration layer was obtained from CGIAR". Resolve Ecore-
gion classifications were used to categorize sampling locations into
biomes”. All spatial covariate layers were reprojected and resampled
to a unified pixel grid in EPSG:4326 (WGS84) at 30-arcsec resolution
(approximately 1 km? at the equator). Areas covered by permanent
snow or ice (for example, the Greenland ice cap and glaciated moun-
tainranges, which were identified using SoilGrids™), barrenland cover
(sparsely vegetated regions defined in EarthEnv’>7¢) and highly urban
and built-up areas were excluded from the analyses. Antarctic areas
were excluded from analyses owing to limited coverage of covariate
layers in the region.

To harmonize the dataacross the different experimental approaches
of the original studies, we included six types of project-specific vari-
ables. This included two continuous variables (sample area and soil
mass for DNA extraction) and the following four categorical variables:
sequencing platform (Illumina, lonTorrent, PacBio, 454Roche and
DNBSEQ-G400); target gene region (ITS1and ITS2); sample type (soil,
topsoil and rhizosphere); and primer set (37 different kinds). As an
intermediate step, we created random forest spatial models (described
below) to derive predicted values of mycorrhizal richness for com-
parisonto observed data at the same geolocation. We filtered samples
from the categorical project-specific variables that failed technical
validation by comparing observed with predicted richness trends
(failures were defined by zero correlation). This process removed all
DNBSEQ-G400 samples (n =3,738), all ITS1samples (n = 33; these sam-
ples also had corresponding ITS2 sequence data that were retained)
and 14 different primer sets (total n = 809), which were filtered before
running the final models. To create spatial predictions, we harmonized
the project-specific variables to the following most common levels:
sample area =100 m?; soil mass for DNA extract = 0.5 g; sequencing
platform =Illumina; target gene = ITS2 (implicit because ITS1 sam-
pleswereremoved); sample type = soil; and primer set = ITS3-1TS4 for
EcM. Before modelling, all categorical project-specific variables were
transformed to binary variables (thatis, one-hot encoding or dummy
variables). See Supplementary Figs. 5-10 for more details on technical
validation and datafiltering.

After outlier removal and validation, the SSU dataset contained 3,234
samples (332 total VT) for AM fungal analysis, and the ITS dataset had
17,519 samples (41,086 total OTUs) for EcM fungal analysis. To create the
training datasets and to reduce potential overfitting, we used only dis-
tinct observations of mycorrhizal fungal richness (that is, samples with
non-identical richness or rarity values). This meant that when multiple
samples fell within the same 1-km? pixel, we removed duplicate richness
estimates to ensure that each observation contributed equally to the
learning process of the model (multipleidentical observations caused
the random forest models to overfit towards those combinations of
richness levels and environmental variables). Using only distinct obser-
vations enabled us to retainimportant within-pixel variation rather than
aggregating across multiple richness estimates per pixel. To deal with
the zerovaluesin the dataset, rarefied richness values were log;,[x +1]
transformed before modelling. In the random forest models, we fixed
the number of trees at 250 and explored different combinations of
hyperparameters by varying the number of variables considered at
each split (4, 6, 8,10 or 12) and the minimum number of samples per
leaf (2,4, 6,8,10 or12).Intotal, 30 hyperparameter combinations were
tested for each AM and EcM response variable.

Thereis ongoing debate about the best methodology for validating
spatial models®®, As aresult, we tested each model using both ran-
dom cross-validation and k-fold nearest neighbour distance matching
cross-validation (kNNDM)3*. Random folds were assigned stratified
per biome to ensure equal coverage of each fold. For both AM and
EcM, the final predictions are an ensemble (mean) of the top ten best
performing models based on coefficient of determination (R?) with
kNNDM ten-fold cross validation. This approach resulted in the fol-
lowing predictive accuracy metrics for richness models: AM random

cross-validated R? = 0.61; AM kNNDM cross-validated R* = 0.20; EcM
random cross-validated R*=0.63; and EcM kNNDM cross-validated
R*=0.28 (Extended Data Fig. 9a). The predictive accuracy metrics for
rarity models were as follows: AM random cross-validated R* = 0.56;
AM KNNDM cross-validated R* = -2.55; EcM random cross-validated
R?>=0.61; and EcM kNNDM cross-validated R*= 0.19 (Extended Data
Fig. 9b). Overall, these performance estimates were similar to (or
exceeded) the predictive accuracy of global machine-learning models
for other soil organisms®*®%_ The poor performance of the AM fungal
rarity model based on KNNDM cross-validation suggests there may be
spatial or environmental structures in the dataset that the model is
unable todetect, whichis possibleifthe VT dataset fails to sufficiently
capture AM fungal endemism patterns because of conservative taxo-
nomic assignments from the AM fungal reference database®’. We used
the SHAP algorithm to interpret the importance and directionality of
environmental features®. Standard feature importance algorithms,
like the onesimplemented inrandom forest or boosted regressiontree
models, measure feature importance asachange inmodel performance
and are more susceptible to feature collinearity. By contrast, SHAP han-
dles feature collinearity relatively well and is based on the magnitude
of feature contribution. We selected SHAP as the most suitable method
here because of the possibility of feature collinearity among the envi-
ronmental predictors and because we were interested in the effect of
thefeatures onthe predicted value (as opposed to the effect on model
error) tointerpret the importance and directionality of the features.

Asweexpected the model performance to decrease with distance to
traininglocations, we also performed spatially buffered leave-one-out
cross-validation (SLOO-cv)®°, acomputationally intensive approachin
which aseparate modelis trained for every unique locationin the data-
setand leaving out locations inarange of buffer sizes. At larger buffer
sizes (thatis, >500 km), SLOO-cv R? values were in line with KNNDM
cross-validation R? values. To transform these findings into a visual
representation, we plotted the R? values against the distance to the
nearestsamplinglocationto create aspatial product (Supplementary
Fig.3). The resulting map was consistent with our previously described
extrapolation map.

To generate a spatial understanding of our predictive accuracy, we
created 100 bootstrap samples by resampling the training datasets
with replacement using biome-based stratification. Leveraging the
hyperparameter settings of the best performing random forest model,
we generated 100 global predictionimages. These were subsequently
used to calculate abootstrap coefficient of variation (derived by divid-
ingthe standard deviation by the mean) and 95% confidence intervals
for each pixel (Extended Data Figs. 7 and 8). To locate environmental
conditions and corresponding geographical regions that are under-
represented in the training data, we first converted the data into the
principal component space. We then selected the first 13 and 14 axes
that cumulatively accounted for 90% of the total variance for the mod-
els for AM and EcM, respectively. We evaluated whether raster pixels
were associated with environmental conditions internal or external
tothe convex hull circumscribing the data points along each pairwise
combination of principal component axes. We defined the degree of
model extrapolation as the proportion of total pairwise combinations
for which a pixel lies outside the corresponding convex hull. Finally,
we combined this environmental extrapolation data with a map of
geographical distance between sampling locations (distance and
environmental extrapolation maps were combined ina2:1ratio, after
scalingeachfrom 0 to1) to produce a global spatial assessment of the
representativeness of our datasets (Extended Data Figs. 7 and 8). The
extrapolation map was then used to mark pixels that were most under-
represented by the training data using a 5% extrapolation cut-off value
(thatis, areas with <95% coverage in training data space).

To explore possible spatial dependency in the data, we fit semi-
variogram models per mycorrhizal type on richness estimates and
model residuals using the R package automap (v.1.1-9)%”. For AM fungi,



we observed autocorrelation in the extrapolated richness data up to
about 900 km; for EcM fungi this range reached about 550 km. This level
of spatial autocorrelation in response variables is unsurprising given
the scale of our georeferenced datasets, similar to a recent analysis
showing that spatial weights of around 800 km were best at handling
spatial autocorrelation in a global plant diversity dataset””. For model
residuals, semi-variograms showed weak, although significant, spa-
tial dependency for both AM and EcM fungal data (Supplementary
Fig.2). We then performed a Global Moran’s /-test with permutations
calculated using the R package sfdep®, including five nearest points as
neighbours and a Gaussian kernel function for building spatial weight
matrices. For the richness estimates, spatial autocorrelation was posi-
tive and highly significant (Moran’s /of 0.71for AM and 0.64 for EcM),
whereas spatial autocorrelation was low in model residuals for both
fungal types (Moran’s /of 0.11for AM and 0.23 for EcM; Supplementary
Fig.1), similar toaprevious study that reported limited effects of geo-
graphical distance on fungal alpha diversity®. To incorporate spatial
processes into the prediction model, we applied spatial eigenvector
mapping using distance-based Moran’s eigenvector maps (AbMEMs)®.
We calculated dbMEMs using the R package adespatial (v.0.3-21)°°,
with the custom function quickMEM?.. The inclusion of dbMEMs in the
modelling approach showed mycorrhizal hotspots predicted in the
same areas but reduced some finer-scale variation in richness predic-
tionsin the non-spatial models (Supplementary Fig.10). These results
led us to conclude that the models without dbMEMs capture the most
variation; however, there might be some fine-scale spatial processes
that are not explained for AM fungi here.

We evaluated how uneven sampling density might change rarity
patterns by comparing model predictions that used current sampling
intensity with those that used a simulated globally homogenous and
high-sampling intensity, as previously described®. We created 1-km?
resolution sampling intensity layers for the SSU and ITS training data-
sets using kernel density interpolation from sample coordinates with
a5°radius and uniform decay rate in QGIS (v.3.40). These layers were
rescaled O-1and included as covariates in the rarity random forest
models to make empirical predictions of AM and EcM fungal rarity
on the basis of the current distribution of sampling efforts. We then
extrapolated rarity models under a global and equally high-sampling
scenario by setting all pixels in the sampling intensity covariate layer
to the maximum value of 1. Comparing patterns from the empirical and
high-sampling rarity models showed where future sampling may reveal
overlooked and under-realized hotspots of mycorrhizal fungal rarity*.
Forall analyses (for example, latitude trends and hotspot protections),
we used the high-sampling rarity models to avoid biases in endemism
predictions that were based on sampling intensity.

To measure how mycorrhizal richness and rarity varies with lati-
tude, predicted richness and rarity pixel values were averaged at every
0.2latitude degrees within 1°-wide longitude bands® using functions
inthe R package Tidyverse (v.2.0.0)°?. Correlations between latitude
and estimated mycorrhizal richness and rarity of samples are also
provided in Extended Data Fig. 2. Mycorrhizal hotspots were defined
by setting a cut-off at the 95th percentile of predicted richness values.
These hotspot pixels were then overlaid with the World Database of
Protected Areas cropped to spatial predictions here (WDPA; www.
protectedplanet.net)® before calculating the total extent to which
mycorrhizal hotspots in different biomes fall within current pro-
tected area delineations. Hotspot overlap with protected areas was
calculated for each [IUCN management category (terrestrial WDPA
categories I-VI and unassigned). To understand mycorrhizal hot-
spot protections relative to other organisms, we compiled recently
published spatial data on the species diversity of vascular plants®,
trees®, ants** and four groups of vertebrates (amphibians, birds,
mammals and reptiles; IUCN®). The same hotspot analysis described
above was applied to these spatial layers, and the total amount of rich-
ness and rarity centre overlap in protected areas was calculated for

comparisons. All spatial analyses were based on raster datain Equal
Earth projection at1-km? pixel resolution, and maps were visualized
in Robinson projection.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data are archived on Zenodo (https://doi.org/10.5281/zenodo.
14871588)%. Fullmap predictions (1-km?global GeoTIFFs) are available
after submitting a data request (https://spun.earth/data-request).
Links to spatial datalayers used for modelling are listed in Supplemen-
tary Table 2. The FungalTraits database (v.1.2; https://doi.org/10.1007/
s13225-020-00466-2) and the MaarjAM database (v.5.6.2019; https://
maarjam.ut.ee/) were used for fungal bioinformatic analyses. Fungal
data used in this study are available from previous publications® 3,

Code availability

Code is available from GitHub (https://github.com/SocietyPro-
tectionUndergroundNetworks/richness_maps/) and permanently
archived in the public Zenodo repository (https://doi.org/10.5281/
zenodo.14871588)%.
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Extended DataFig. 3 | Spatial predictions of how increased sampling could
change the global distribution of mycorrhizal fungal rarity hotspots. We
built machinelearningmodels of A) AM and B) EcM fungal rarity under two
sampling scenarios. We first created empirical predictions (yellow) based on
samplerarity values and the current geographic distribution of sample density
(i.e., more concentrated sampling in North America, Europe, and Asia). We then
builtasecond predictive model that simulated ‘high-sampling’ efforts (red) by

Empirical

Empirical

setting the sampling density covariate layer to the global max value in all pixels.
Mapping predicted rarity hotspots under these different scenarios shows areas
that may fall out of the top 5% of global endemism centers under increased
sampling (yellow), hotspot predictions thatare robust to future sampling efforts
(orange), and places where future sampling s likely to reveal undiscovered rarity
hotspots (red).
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Extended DataFig. 4 |SHapley Additive exPlanations (SHAP) value

plots showing the magnitude and direction of relationships between
environmental predictors and mycorrhizal richness. For A) AM fungiand B)
EcM fungi, variables at the top of the graph are the mostimportant predictors
with decreasing importance down the figure. Bar graphs (left) show mean
absolute SHAP values that measure the overall magnitude of each covariate

onmodel predictionsin units of fungal richness. Beeswarm plots (right) show
thedirectionality of SHAP values, with points left of the zero-line indicating a
negative relationship between mycorrhizal richnessand agiven predictor. The
red/blue color gradient represents fungal richness values associated witha
predictor.
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Extended DataFig. 5| SHapley Additive exPlanations (SHAP) value

plots showing the magnitude and direction of relationships between
environmental predictors and mycorrhizal rarity. For A) AM fungiand B)
EcM fungi, variables at the top of the graph are the most important predictors
with decreasing importance downthe figure. Bar graphs (left) show mean
absolute SHAP values that measure the overall magnitude of each covariate on

model predictionsinunits of fungal rarity-weighted richness. Beeswarm plots
(right) show the directionality of SHAP values, with points left of the zero-line
indicating anegative relationship between mycorrhizalrarityand agiven
predictor. Thered/blue color gradient represents fungal richness values
associated withapredictor.
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Extended DataFig. 6 | Average model uncertainty and extrapolation
perbiome. Model uncertainty was measured as the coefficient of
variationacross bootstrapped model predictions for A) richness models
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terrestrial ecosystems. In total, we calculated fungal richness estimates for 25,000 geolocated soil samples comprising >2.8 billion
fungal sequences. We used this data to train machine-learning models with 22 geospatial environmental layers for creating high-
resolution (1km2) global spatial predictions of mycorrhizal richness. These spatial predictions were then further analyzed to assess
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database comparison6. All samples from these two studies were removed (N=2,070). We then filtered samples by biome by
removing estimated richness values that were more than five times the interquartile range higher than the biome-level median
estimate. We only filtered values at the highest end of the distribution to avoid potentially removing ‘true’ estimates of low or zero
mycorrhizal richness at a given location. See Supplemental Table 1 for a summary of outliers removed per biome. We also filtered
samples from project-specific variables that failed technical validation by comparing observed vs. predicted richness trends (failures
defined by zero correlation). This process removed all DNBSEQ-G400 samples (N=3,738), all ITS1 samples (N=33; these samples also
had corresponding ITS2 sequence data which were retained), and 14 different primer sets (total N=809), which were filtered prior to
running the final models.
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