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Global hotspots of mycorrhizal fungal 
richness are poorly protected

Michael E. Van Nuland1 ✉, Colin Averill2,3, Justin D. Stewart1,4, Oleh Prylutskyi5, 
Adriana Corrales1, Laura G. van Galen1,2, Bethan F. Manley1, Clara Qin1, Thomas Lauber2, 
Vladimir Mikryukov6, Olesia Dulia6, Giuliana Furci7, César Marín4,8, Merlin Sheldrake1,4, 
James T. Weedon9, Kabir G. Peay10,11, Charlie K. Cornwallis12, Tomáš Větrovský13, Petr Kohout13, 
Petr Baldrian13, Leho Tedersoo6,14, Stuart A. West15, Thomas W. Crowther2, E. Toby Kiers1,4, 
SPUN Mapping Consortium* & Johan van den Hoogen1,2

Mycorrhizal fungi are ecosystem engineers that sustain plant life and help regulate 
Earth’s biogeochemical cycles1–3. However, in contrast to plants and animals, the 
global distribution of mycorrhizal fungal biodiversity is largely unknown, which limits 
our ability to monitor and protect key underground ecosystems4,5. Here we trained 
machine-learning algorithms on a global dataset of 25,000 geolocated soil samples 
comprising >2.8 billion fungal DNA sequences. We predicted arbuscular mycorrhizal 
and ectomycorrhizal fungal richness and rarity across terrestrial ecosystems. On the 
basis of these predictions, we generated high-resolution, global-scale maps and 
identified key reservoirs of highly diverse and endemic mycorrhizal communities. 
Intersecting protected areas with mycorrhizal hotspots indicated that less than 10%  
of predicted mycorrhizal richness hotspots currently exist in protected areas. Our 
results describe a largely hidden component of Earth’s underground ecosystems and 
can help identify conservation priorities, set monitoring benchmarks and create 
specific restoration plans and land-management strategies.

Mycorrhizal fungi form nutritional symbioses with >80% of plant 
species and build extensive underground hyphal networks that can 
constitute >30% of the living microbial biomass of soils1. The fungi use 
their networks to forage in the soil for phosphorus, nitrogen and trace 
elements, and receive carbon from plant root systems in return. The 
diversity and activity of these fungal communities is fundamental to the 
functioning of Earth’s terrestrial ecosystems, with an estimated 3.6 bil-
lion tons of carbon annually allocated through plants to mycorrhizal 
fungi2,3. However, despite their importance, our understanding of the 
global distribution of mycorrhizal fungal biodiversity lags far behind 
plants and animals. As a result, it is difficult to develop appropriate 
measures to protect these organisms and the integrity of their sym-
biotic partnerships4,5.

Over the past decade, the emergence of comprehensive, large-scale 
molecular datasets on belowground fungi have made it possible to 
establish global baselines of mycorrhizal fungal biogeography6–8. These 
efforts have helped reveal the dominance of two types of mycorrhizal 
symbionts spread across Earth’s terrestrial biomes: ectomycorrhizal 
(EcM) fungi and arbuscular mycorrhizal (AM) fungi. These fungal types 
differ in their physiology, symbiotic behaviour and contribution to 
carbon cycling9,10. Although only about 2% of terrestrial plant species 

depend on EcM associations, these host species constitute >25% of 
global vegetation area and dominate in high-latitude forests11. AM fungi 
form associations with around 80% of plant species11 and dominate in 
tropical forests, grasslands and croplands globally. A third type—ericoid 
mycorrhizal (ErM) fungi—are common in high-elevation and high-
latitude ecosystems but are rarer globally11. The scarcity of ErM fungi 
in large-scale fungal datasets has left a sizable gap in our understand-
ing of their global diversity patterns or conservation opportunities.

Previous work has used plant genus as a proxy of mycorrhizal type to 
reveal fundamental insights into the distributions and functions of myc-
orrhizal symbioses12–14. However, efforts to explore mycorrhizal fungal 
biogeography from direct microbial observations, with methods such 
as DNA-based surveys of soil samples15–19, have shown that aboveground 
and belowground biodiversity patterns are often not correlated20. This 
finding means that patterns of plant communities may not accurately 
reflect distributions of mycorrhizal diversity belowground. Moreover, 
our ability to identify the scale of this mismatch is limited by geographi-
cal biases in the locations of mycorrhizal samples used for predictive 
modelling. Such large data gaps inevitably result in extensive model 
extrapolation into untrained environmental space21, which is particu-
larly unreliable in under-sampled tropical regions where AM fungi are 
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likely to dominate. Generating high-resolution global distributions of 
mycorrhizal fungal diversity from direct observations—and quantifying 
the extent of model uncertainty22—is essential to guide future conserva-
tion planning5. Protecting mycorrhizal fungal diversity will help avoid 
species loss across other taxonomic groups and help maintain critical 
ecosystem functions (for example, carbon sequestration) for realizing 
nature-based climate mitigation strategies4,5. To address these chal-
lenges, we took the following steps: (1) built machine-learning models to 
create high-resolution (1 km2) spatial predictions of mycorrhizal fungal 
richness and endemicity (rarity-weighted richness) at the global scale; 
(2) identified mycorrhizal fungal richness and endemism hotspots and 
assessed the extent of their current environmental protections; and  
(3) characterized spatial uncertainty and data limitations.

Calculating global fungal richness
First, we explored the distribution and range of the training data (Fig. 1). 
This dataset consisted of a globally distributed collection of nearly 
25,000 soil samples containing >2.8 billion fungal DNA sequences 
from 130 countries compiled in the GlobalFungi, GlobalAMFungi and 
Global Soil Mycobiome consortium databases6–8. These are the largest 
datasets of fungal internal transcribed spacer (ITS) and small subunit 
(SSU) rRNA amplicon sequences assembled so far. These sequences 
were analysed using virtual taxa (VT) for AM fungi and 97% similar 
operational taxonomic units (OTUs) for EcM fungi. With these data, 
we estimated AM and EcM fungal richness using a rarefaction and 
extrapolation approach, and rarity-weighted richness (hereafter ‘rar-
ity’; Extended Data Fig. 1), which is a metric of relative endemism used 
to guide conservation priorities23.

Across both AM and EcM datasets, temperate forests were the most 
sampled biomes (32–61% of all samples), and mangroves and flooded 
grasslands were the least sampled biomes (0.1% of all samples). There 

were only a few AM fungal samples from desert and tundra biomes, and 
few EcM fungal samples from tropical dry forests and tropical conifer 
forests. Compared with other biomes, soil samples from montane grass-
lands, tropical conifer forests and temperate broadleaf forests showed 
the highest AM fungal richness estimates (Fig. 1a). Similarly, montane 
grasslands had the greatest AM fungal rarity estimates, followed by 
Mediterranean forests and tropical grasslands with the next highest 
in AM fungal endemism levels (Extended Data Fig. 1a). For EcM fungi, 
samples from coniferous forests (tropical and temperate) and temper-
ate broadleaf forests had the highest richness estimates (Fig. 1b). EcM 
fungal endemicity was also highest in tropical conifer forests, whereas 
tundra and Mediterranean forests showed a greater concentration 
of rare EcM fungi than temperate forests (Extended Data Fig. 1b). We 
used these datasets to train random forest machine-learning models 
to predict global AM and EcM fungal richness and endemism patterns.

We wanted to know whether mycorrhizal fungi show clear global 
diversity patterns like plants and animals. To that end, we used maps of 
predicted richness to plot mean richness and rarity across latitudes. Pre-
dicted AM fungal richness was highest in ecosystems near the equator 
and gradually declined towards the poles. This result was in agreement 
with the classical latitude diversity gradient hypothesis observed across 
many taxa24,25 (Fig. 2a). By contrast, predicted EcM fungal richness was 
lowest near the equator and showed more species-rich communities 
across northern latitudes and in southern regions of South America 
and Australia, which created an inverse latitudinal diversity gradient 
(Fig. 2b and Extended Data Fig. 2). Latitudinal patterns of AM fungal 
endemism showed a similar pattern as AM richness, but EcM fungal 
endemism had a moderate increase near the equator compared with 
EcM richness (Fig. 3). These relationships probably emerged through 
a complex interplay of host vegetation14,26, degree of host specific-
ity11,27 and plant–soil nutrient economies28,29. Notably, these analyses 
highlighted that plant diversity is not a straightforward indicator for 
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Fig. 1 | Sample locations and mycorrhizal richness trends by biome.  
a,b, Distribution of sites and richness estimates for AM fungi (a) and EcM  
fungi (b). VT were created from SSU sequences for AM fungi, and 97% similar 
OTUs were created from ITS sequences and assigned to EcM fungi. Mycorrhizal 
richness patterns across terrestrial biomes are shown in boxplots (mangroves, 
flooded grasslands and rock and ice biomes not shown owing to low numbers 
of samples in both datasets). Global distributions of estimated richness are 

shown in density curves above biome-level boxplots. Boxplots indicate the 
median (centre line), first and third quartiles (lower and upper box edges) and 
1.5× the interquartile range (IQR) (box whiskers). EcM richness data are shown 
as square-root transformed for visualization. Richness estimates were calculated 
using a rarefaction and extrapolation approach that incorporates sequencing 
depth per sample. Points shown here are all samples that passed quality-control 
checks and used as training data.
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mycorrhizal fungal biodiversity at global scales20,26. This finding is 
a problem for the assumption that Earth’s mycorrhizal fungi will be 
automatically protected under new biodiversity initiatives, as current 
conservation policy tends to rely on plant and animal diversity metrics 
for determining priority areas and ecosystem value5,30.

Mycorrhizal fungal hotspots
If plant diversity is not a direct indicator of mycorrhizal fungal diver-
sity, then protecting underground biodiversity requires explicit con-
sideration that is based on the development of new high-resolution 
identification and monitoring approaches. For effective underground 
conservation, the identification of global hotspots of mycorrhizal 
biodiversity is particularly important. We therefore used our spatial 
predictions to locate areas of highly species-rich and endemic myc-
orrhizal fungal communities (hotspots). Hotspots were defined as 
pixels in the upper 95th percentile of predicted richness and rarity 
values globally, as per previous definitions25,31. This analysis resulted 
in richness cut-off values of 39.9 VT for AM fungi and 60.0 OTUs for 
EcM fungi, and unitless rarity cut-off values of 0.24 for AM fungi and 
1.27 for EcM fungi.

Sampling bias can affect the relative rarity of species, which means it 
is important to determine whether predicted endemism hotspots are 
biologically real or an artefact of uneven global inventories of mycor-
rhizal fungi. We trained the AM and EcM fungal rarity machine-learning 
models with additional covariate layers of global sampling intensity. 
These layers were created using kernel density interpolation from 
sample coordinates in the SSU and ITS training datasets (Methods). 
This approach enabled us to compare empirical rarity predictions under 
current sampling intensities against predictions that simulated univer-
sally ‘high-sampling’ scenarios, as previously reported32. For AM fungi, 

there was substantial overlap between the empirical and high-sampling 
rarity hotspot predictions (Extended Data Fig. 3a), which indicated 
that current sampling efforts are generally capturing the distribution 
of endemic AM fungal taxa. However, there was large divergence in the 
empirical and high-sampling predictions of EcM rarity hotspots, par-
ticularly in tundra and tropical forest biomes (Extended Data Fig. 3b). 
This result suggests that increasing sampling efforts in these habitats 
will probably reveal new or overlooked hotspots of rare and endemic 
EcM fungi. For both mycorrhizal types, we used the high-sampling 
predictions for subsequent spatial analyses.

We predicted major hotspots of AM fungal richness and endemic-
ity across savannas of the Brazilian Cerrado, tropical forests across 
Southeast Asia and Guinean forests in West Africa (Figs. 2a and 4). Our 
models showed that these areas may contain more than 45 AM fungal 
species (VT) per 100 m2. Species-rich communities of AM fungi were 
likewise predicted in parts of East and North China in ecosystems that 
are rapidly undergoing significant anthropogenic land-use changes33. 
Smaller regions, like the montane grasslands in Ethiopia, dry forests 
throughout Central America and Mediterranean woodland and scrub-
land in Europe, were also predicted to contain highly diverse collections 
of AM fungi (Fig. 2a). However, these areas were not predicted to be 
endemicity hotspots. Instead, AM fungal endemicity hotspots were 
predicted to occur in tropical and subtropical forests in the Congo 
basin and eastern Amazon basin (Figs. 3a and 4). Although montane 
grasslands had the most species-rich AM fungal samples in the model 
training data, this biome did not emerge as a substantial AM fungal 
richness or rarity hotspot at the global level. This result may be due 
to the low number of samples from these habitats or the extent and 
location of montane grasslands compared with other biomes.

We predicted EcM fungal richness hotspots throughout northern for-
est ecosystems (Figs. 2b and 5). These included much of the Siberian and 
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Fig. 2 | Global predictions and latitudinal trends of mycorrhizal fungal 
richness. a,c, Richness maps show the predicted number of AM fungal VT (a) 
and EcM fungal OTUs (c) per 100 m2 (pixels approximately 1 km2). Predicted 
richness values are capped at 45 VT per 100 m2 (AM) and 70 OTUs per 100 m2 
(EcM) for visualization. Crosshatches are superimposed over areas that are 
underrepresented by the training data (highly extrapolated) where model 
predictions should be interpreted with caution. Plots show mean richness 
trends across latitude (shaded area is ±2 s.e.m.). b,d, Bivariate maps show the 

combination of pixel-level uncertainty (orange gradient) and extrapolation 
(purple gradient) of AM (b) and EcM (d) fungi richness predictions. Uncertainty 
is measured as the coefficient of variation across n = 100 bootstrapped model 
predictions. Extrapolation reflects the degree of environmental difference and 
geographical distance from samples in the training dataset. Histograms on the 
charts show the frequency of pixels in different uncertainty and extrapolation 
levels visualized here. Masked areas (grey) are sparsely vegetated zones and 
dense urban areas based on global land-cover data.
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Canadian boreal forest regions, temperate coniferous forests across 
Western United States and Canadian mountain ranges and temperate 
broadleaf and mixed forests in Central Europe and the North Ameri-
can Great Lakes region. We predicted that these places could have 
underground ecosystems averaging >100 EcM fungal species (OTUs) 
per 100 m2. However, most of these northern forest biomes were not 
identified as EcM fungal endemism hotspots. Instead, we predicted 
that tundra ecosystems contained the greatest EcM rarity levels at 
high latitudes (Figs. 3b and 5). We also identified areas of global EcM 
diversity hotspots—especially rarity hotspots—in tropical biomes, 
such as tropical moist forests in China’s Yunnan–Guizhou plateau and 
mainland Southeast Asia, montane rainforests across Indonesia and 
Guianan highland forests in Venezuela. Of particular note are the pre-
dicted EcM fungal endemism hotspots in tropical conifer forests in 
Central America that contain the highest richness of EcM host plant 
lineages34. EcM fungal richness and rarity hotspots in the Southern 
hemisphere were predicted to be concentrated primarily in the Andes 
Mountain range and the temperate mixed forests in southern Chile, 
the east coast of Australia and New Zealand (that is, all habitats of the 
Nothofagaceae plant family).

Mycorrhizal hotspot protections
To assess the extent to which mycorrhizal diversity is currently pro-
tected, we overlaid mycorrhizal hotspot pixels with protected areas 
defined by the World Database of Protected Areas35. We then calculated 
the total extent to which the hotspots were within current protected 
area delineations. This analysis revealed that the centres of mycorrhizal 
biodiversity were unequally distributed across biomes; nearly all had 

low protective coverage, and the management stringencies for pro-
tected hotspots differed among the mycorrhizal types (Figs. 4 and 5). 
Globally, we predicted that only 9.5% of mycorrhizal richness hotspots 
occur in protected habitats, including 5.1% (about 280,000 km2) of AM 
hotspots and 13.9% (around 756,000 km2) of EcM hotspots. Mycorrhizal 
rarity hotspots were protected at roughly twice the rate (22.9% over-
all), with 22.6% (about 1.2 million km2) and 23.2% (around 1.3 million 
km2) of AM and EcM fungal rarity hotspots overlapping with protected 
areas, respectively. This result is probably because high levels of end-
emism often result from geographical barriers that cause insularity. 
Moreover, protected areas are more frequently established in remote, 
hard-to-access areas where human pressures are anticipated to remain 
low, regardless of conservation action36.

The protected areas considered here cover roughly 16 million km2 
and contain everything from strict nature reserves to managed resource 
areas (International Union for Conservation of Nature (IUCN) man-
agement categories I–VI and not applicable (NA) or undefined (NA/
undefined)). Analyses of hotspot protections by management category 
revealed that most protected AM fungal hotspots are in the least-strictly 
preserved habitats (Fig. 4). Specifically, 76.4% (richness) and 72.8% 
(rarity) of protected AM hotspots are under categories V, VI or NA/unde-
fined. By contrast, protected EcM fungal hotspots are mostly under 
the strictest preservation levels, including nearly half of protected 
EcM richness and rarity hotspot area in IUCN categories I–III (Fig. 5).

At the continent scale, predicted mycorrhizal fungal hotspots in Asia 
have the lowest protection for both AM fungi (richness = 2.2% and rar-
ity = 7.5% protected) and EcM fungi (richness = 11.3% and rarity = 17.2% 
protected), even though these hotspots are concentrated in different 
biomes for each mycorrhizal type (tropical moist forests compared 
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Fig. 3 | Global predictions and latitudinal trends of mycorrhizal fungal 
endemism. a,c, Endemism maps show the predicted rarity-weighted richness 
of AM fungal VT (a) and EcM fungal OTUs (c) per 100 m2 (pixels approximately 
1 km2). Rarity-weighted richness is a unitless metric, and predicted values are 
capped at 0.26 (AM) and 1.5 (EcM) for visualization. These spatial predictions 
reflect the simulated high-sampling scenarios to limit unequal sampling 
effects on rarity patterns. Crosshatches are superimposed over areas that  
are underrepresented by the training data (highly extrapolated) where  
model predictions should be interpreted with caution. Plots show mean rarity 
trends across latitude (shaded area is ±2 s.e.m.). b,d, Bivariate maps show the 

combination of pixel-level uncertainty (orange gradient) and extrapolation 
(purple gradient) of AM (b) and EcM (d) fungi rarity-weighted richness 
predictions. Uncertainty is measured as the coefficient of variation across 
n = 100 bootstrapped model predictions. Extrapolation reflects the degree  
of environmental difference and geographical distance from samples in the 
training dataset. Histograms on the charts show the frequency of pixels in 
different uncertainty and extrapolation levels visualized here. Masked areas 
(grey) are sparsely vegetated zones and dense urban areas based on global 
land-cover data.
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with boreal and tundra systems; see the Zenodo archive (https://doi.
org/10.5281/zenodo.14871588)37 for continent-level results). Europe has 
the highest protected AM fungal richness hotspots (19.6% protected), 
which we predicted to occur mainly in Mediterranean forests across 
the continent. Australia and Oceania showed the largest protected area 
overlap with AM fungal rarity hotspots (35.7% protected), primarily in 
tropical grasslands. Predicted EcM fungal richness hotspots are also the 
most well protected in Australia and Oceania (40.2% protected), which 
largely occur throughout temperate broadleaf forests. Both Australia 
and Oceania and South America have the largest protected area overlap 
with predicted EcM fungal endemism hotspots (46% protected).

Environmental predictors
Given the distinct hotspot locations and latitude–diversity relation-
ships, we used shapley additive explanations (SHAP) to analyse which 
of the 24 environmental covariates were the most important predictors 
of mycorrhizal fungal richness and rarity. This method quantifies the 
additive contribution of each feature of a machine-learning model 
(for example, temperature and rainfall) on its predicted values, as 
opposed to measuring feature importance based on changes in model 
performance38. Therefore, SHAP is a useful method for interpreting the 

magnitude and directionality of predictors in our machine-learning 
models with respect to changes in mycorrhizal diversity. Moreover, in 
exploratory tests, the inclusion of spatial predictors (Moran Eigenvec-
tor layers) generally did not change the identity or order of important 
variables in either of the richness models. This result confirmed that 
the rankings of the most important predictors of mycorrhizal fungal 
richness are unlikely to be biased by spatially autocorrelated processes 
not included in the model (Supplementary Figs. 1 and 2).

Among the climate features, temperature (annual mean tempera-
ture and maximum temperature of warmest month) was generally 
the most important climatic predictor across all AM and EcM models 
(Extended Data Figs. 4 and 5). By calculating mean absolute SHAP 
values, these variables were two to five times more influential than 
other predictors, contributing ±0.07 VT to each AM fungal richness 
prediction and ±0.11 OTUs to each EcM fungal richness prediction 
on average. Specifically, higher temperatures predicted greater AM 
fungal richness and lower EcM fungal richness. Potential evapotran-
spiration was also an influential climate predictor for rarity models, 
with drier areas associated with higher AM and EcM fungal endemic-
ity (Extended Data Figs. 4 and 5). However, the evapotranspiration 
trends were opposite for EcM diversity metrics, whereby drier areas 
were associated with lower EcM fungal richness. Using paleoclimate 
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data, EcM fungal rarity was strongly and positively associated with cli-
matic stability since the Pliocene (Extended Data Fig. 5; mean absolute 
SHAP value of ±0.04 OTUs), which indicates that current endemicity 
patterns reflect the evolutionary history of EcM fungal symbioses 
over millions of years. These findings add to recent work showing a 
link between climate and soil fungi at global scales17,39. Moreover, the 
results probably reflect joint climate tolerances of mycorrhizal fungi 
and their plant hosts, as well as climatic controls on soil organic matter 
decomposition13,15,17,28,39.

The importance of climatic controls in predicting mycorrhizal diver-
sity was further supported by strong links between fungal richness and 
soil organic carbon. Greater soil organic carbon was associated with 
higher EcM richness and lower AM richness (Extended Data Fig. 4; mean 
absolute SHAP values of ±0.11 OTUs and ±0.08 VT, respectively). This 
result is consistent with past findings that soil organic carbon stocks 
are positively associated with EcM plant dominance14,40 and probably 
relates to metabolic differences between AM and EcM fungi in enzy-
matic capabilities and plant host litter chemistry9,41. In contrast to EcM, 
AM fungal richness peaked in the tropics, where climate and other biotic 
conditions favour rapid mineralization of plant litter that may drive AM 
fungal dominance over EcM symbiosis. Soil organic carbon was not 
among the top 10 most important predictors of EcM fungal endemism 

(mean absolute SHAP value of ±0.01 OTUs; Extended Data Fig. 5), which 
helps explain why we predicted substantial EcM rarity hotspots across 
tropical forests with generally lower soil carbon stocks than temperate 
or boreal forests12. Notably, soil pH (as a geospatial covariate layer) 
was not among the most important predictors identified in AM or EcM 
models, despite past work describing its importance in shaping overall 
soil fungal diversity patterns and AM fungal niche traits16,42.

In addition to climate, we were interested in testing how human 
activities affect diversity patterns. Given that 95% of the Earth’s ter-
restrial surface is affected by some level of human modification43, we 
used the summed percentage of cultivated and managed areas and 
urban and built-up habitats to measure anthropogenic land-cover 
(dense urban centres were masked from predictions; Methods). 
Anthropogenic land-cover emerged as an important and positive 
predictor of AM fungal richness (mean absolute SHAP value of ±0.07 
VT; Extended Data Fig. 4). Although sampling bias in the SSU data-
set from human-modified habitats may be partially responsible, dis-
turbed ecosystems also tend to contain more ruderal, wind-dispersed 
AM fungal species that can increase local species richness at the 
expense of homogenizing regional-scale species composition44,45. 
Human-mediated land modification was a less important feature in 
the AM fungal rarity model (mean absolute SHAP value of ±0.004 VT; 

Flooded grasslands

Mangroves

Deserts

Temperate grasslands

Tropical conifer forests

Mediterranean forests

Tropical dry forests

Montane grasslands

Tropical grasslands

Temperate conifer forests

Temperate broadleaf forests

Tropical moist forests

Boreal forests

Tundra

Mangroves

Tropical grasslands

Tropical dry forests

Deserts

Flooded grasslands

Tropical conifer forests

Mediterranean forests

Tropical moist forests

Montane grasslands

Tundra

Temperate grasslands

Temperate conifer forests

Temperate broadleaf forests

Boreal forests

0 0.5 1.0
Area protected (%)

EcM fungal richness hotspots

1.5 2.0

86.1%
Unprotected

EcM fungal 
rarity

hotspot

76.8%
Unprotected

EcM fungal richness hotspot
EcM fungal rarity hotspot
EcM fungal richness and rarity hotspot overlap

0 0.5 1.0
Area protected (%)

EcM fungal rarity hotspots

1.5 2.52.00 15 30 45 60 0 15 30 45 60

ND

ND

ND

ND

Total area (million km2) Total area (million km2)

Protected
IUCN category

NA VI V IV III II I Protected
IUCN category

NA VI V IV III II I

EcM fungal
richness
hotspot

I     2.8%
II    3.1%
III   0.1%
IV   3.0%
V  1.8%
VI  0.5%
NA  2.6%

I     3.1%
II    7.0%
III  0.7%
IV  3.1%
V   1.1%
VI  5.9%
NA  2.3%

Protected
IUCN
category

Protected
IUCN
category

30° S

30° N

0°

0° 60° E60° W 120° E120° W

Fig. 5 | Ectomycorrhizal fungal hotspots and global protected areas. 
Predicted richness and endemism hotspots (95th percentile of predictions) for 
EcM fungi. Coloured areas on the map show richness hotspots (green), rarity 
hotspots (purple) and the overlap of richness and rarity hotspots (yellow). 
Black areas indicate non-hotspots. Bar graphs show the total hotspot size and 
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reflects the ambitions of 30 × 30 target goals under the Kunming–Montreal 
Global Biodiversity Framework.
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Extended Data Fig. 5) than in the AM fungal richness model, which could 
be interpreted as supporting the regional homogenization hypothesis. 
An open question is whether changes in AM fungal-associated vegeta-
tion, such as new crops and exotic plants, create more opportunities 
for diverse plant–AM fungal interactions to occur14,46. Different types 
of human disturbance are likely to have different effects on AM fungal 
diversity, and future research on AM fungi in human-modified habi-
tats would benefit from analyses with more specific spatial layers on 
anthropogenic landscapes.

Aboveground plant biomass was the top predictor for EcM richness 
and rarity models (richness mean absolute SHAP value of ±0.13 OTUs; 
rarity mean absolute SHAP value of ±0.05), with higher biomass posi-
tively predicting higher EcM fungal richness and rarity. In general, this 
result reflects the dominance of EcM fungi in forest ecosystems, includ-
ing estimates that 60% of all tree stems on Earth form EcM symbioses13. 
Elevation and slope were also among the most important predictors 
of EcM rarity (mean absolute SHAP values of ±0.04 and ±0.03, respec-
tively; Extended Data Fig. 5), and we predicted hotspots of endemic EcM 
fungal communities across mountainous terrain in the Andes, Sierra 
Madre, Sierra Nevada and Cascade Mountain ranges (Fig. 5). For EcM 
fungi, aboveground biomass and topography may be more reliable 
indicators of richness and rarity than plant diversity. This finding is 
encouraging given that remote-sensing tools are increasingly able to 
detect complex forest structures of significant ecological value for 
protection47. Our results further underscore the critical planetary ben-
efits of high-biomass forests that are supported by and foster endemic, 
species-rich EcM fungal communities.

Uncertainty analyses
For spatial predictions of biodiversity to be useful in conservation 
policy, it is important to measure and communicate the uncertainty 
associated with each prediction22. This is especially true for microbial 
biodiversity predictions that are more challenging to verify compared to 
plant and animal distributions48. To do so, we calculated two pixel-level 
metrics of uncertainty (Methods). In brief, we defined statistical uncer-
tainty as the coefficient of variation in the predictions across n = 100 
bootstrap samples of the training data to create a confidence interval 
around the prediction mean of each pixel. Next, we quantified extrapo-
lation as the extent to which a given pixel departs from the sampling 
locations and the range of environmental conditions in the training data.

The uncertainty range of richness models were similar among myc-
orrhizal types. The coefficient of variation (the relative dispersion of 
pixel values around predicted means) ranged mostly between 0 and 
0.06 for AM and EcM richness models (Fig. 2). AM fungal rarity mod-
els showed slightly higher uncertainties than for EcM fungal rarity 
interpolations (0.10–0.20 coefficient of variation; Fig. 3). This result 
is probably caused by differences in the characteristics of AM and EcM 
fungi that may affect local-scale sample variation or species detection 
(for example, host specificity and dispersal ability) and differences in 
the underlying datasets (for example, sample sizes and coverage across 
environmental gradients). The predictive accuracy of both fungal rich-
ness models was comparable (random cross-validation R2 = 0.61 for AM 
and R2 = 0.63 for EcM), which indicated that both spatial predictions 
are robust despite the differences in training dataset size. Spatial pat-
terns of uncertainty were different for both mycorrhizal types and 
diversity metrics (Extended Data Fig. 6). For example, EcM fungal rich-
ness models showed approximately double the uncertainty in desert, 
grassland and tropical forest biomes compared with AM models. AM 
fungal model uncertainties were highest in areas with low predicted 
richness, such as desert and tundra regions (Fig. 2b).

Locations with high extrapolation reflected poor representation in 
the model predictors and were primarily in regions that are consistently 
underrepresented in global soil biodiversity data49 (Extended Data 
Figs. 7 and 8). For AM fungi, areas that require greater extrapolation 

included northern India, the Tibetan plateau, Indonesia and parts of the 
Amazon rainforest (Figs. 2 and 3). Therefore, extra caution is required 
when examining AM fungal predictions in these regions. Overall, the 
EcM predictions were less dependent on model extrapolation because 
they were built from a larger training dataset (over five times more ITS 
samples distributed across a wider range of environmental conditions 
than the SSU samples used for AM fungi). However, there were small 
regions with a high degree of EcM model extrapolation in Sub-Saharan 
Africa, northern Canada and Southeast Asia (Figs. 2 and 3).

Important critiques of machine-learning geospatial approaches have 
been recently noted21. We performed the following actions to address 
these concerns: (1) accounted for spatial autocorrelation variables in 
the model (Supplementary Figs. 1 and 2); (2) created spatial blocks to 
limit the distance between sample and prediction locations for addi-
tional cross-validation (Supplementary Fig. 3); and (3) provided clear 
data on prediction uncertainty (Figs. 2 and 3 and Extended Data Figs. 7 
and 8). Moreover, we conducted multiple cross-validation procedures 
as there is currently no consensus on best practices for validating spa-
tial models and measuring their inaccuracies (Methods). Overall, our 
models performed similar to (or better than) the accuracy of recent 
machine-learning predictive mapping approaches used for other soil 
organisms (Methods and Extended Data Fig. 9).

Conclusions
Our high-resolution, global-scale maps of AM and EcM fungal diversity 
suggest that <10% of mycorrhizal richness hotspots currently exist in 
protected areas. The same analysis for non-fungal taxa showed that 
both plant and animal biodiversity hotspots are much better protected. 
Replicating the analysis with spatial data of other taxonomic groups 
showed roughly 3-fold higher protection of richness hotspot areas 
for vascular plants (27% protected), trees (34% protected), ants (28% 
protected) and vertebrates (33–41% protected for amphibians, birds, 
mammals and reptiles), which is probably because threatened species 
in these groups drive most conservation interventions31,50. Endemic 
mycorrhizal fungi may be faring better: overall 22.9% of predicted rarity 
hotspot areas overlapped with protected areas, similar to the protection 
coverage of vertebrate rarity centres (19–21% protected for amphib-
ians, birds, mammals and reptiles). To fully realize the 30 × 30 target 
goals of protecting Earth’s biodiversity under the Kunming–Montreal 
Global Biodiversity Framework, it is necessary to identify underground 
conservation priorities, set monitoring benchmarks and create specific 
restoration plans51. For example, our data can be used to help develop 
land-management strategies to protect and maintain mycorrhizal diver-
sity reservoirs52, including identifying soil-management practices devel-
oped over millennia by local populations53. We also recommend that 
any use of these predictive biodiversity maps in a specific locale should 
be cross-referenced with the model uncertainty and extrapolation 
layers in the same area to maximize positive conservation outcomes22.

Our results should be seen as a first step towards understanding the 
baseline protected levels of Earth’s mycorrhizal fungal diversity. Over-
laying protected areas on biodiversity hotspots does not tell us how suc-
cessful these conservation strategies are at maintaining or improving 
mycorrhizal fungal biodiversity. Because IUCN management categories 
vary in strictness of habitat preservation, it is also important to analyse 
hotspot protections on the basis of these management categories, few 
of which are entirely free of human pressures. A critical next step will 
be to measure the effectiveness of protected areas to mitigate fungal 
biodiversity loss, as has been done using counterfactual analysis for 
other organisms54. This strategy will help determine which protected 
area conditions and objectives best deliver conservation benefits to 
mycorrhizal fungi—such as focusing on rare or threatened species, 
unique ecosystems and their entire communities, vital ecosystem 
services and/or locations of cultural and social significance. Conser-
vation efforts will also be more effective by continuously monitoring 
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mycorrhizal fungi, as they have known vulnerabilities to environmental 
change and disturbance19,52, and there is a need to track their recovery 
following conservation and restoration actions.

Owing to insufficient data, we were unable to robustly model ErM or 
orchid mycorrhizal fungal richness patterns. For instance, the average 
ErM fungal richness per sample was 0.6 species, and <3% of samples 
contained more than 4 ErM fungal species. These are both important 
fungal symbioses to understand in a global context because of their 
unique contributions to plant ecology and ecosystem functions11. Addi-
tional sequencing projects and data-mining efforts will facilitate large-
scale analyses of these mycorrhizal types. A second issue is that using 
SSU data to understand the biogeography of AM fungal richness and 
rarity may be problematic owing to overly conservative species defini-
tions that could underrepresent the true diversity of this mycorrhizal 
type (Methods). AM fungi have a unique genetic organization with 
high intragenomic variation that makes their sequencing and species 
definition more difficult than for EcM fungi, and only 332 AM fungal 
species have been formally described8. Alternative approaches, such 
as long-read sequencing of both environmental AM fungi and culture 
collections and the use of multiple metabarcoding target regions, may 
provide additional insights into the definition and distribution of AM 
fungal biodiversity55.

Although our models performed similar to (or better than) those 
for other soil organisms (for example, nematodes, springtails and 
earthworms; Methods), they are still an imperfect representation of 
mycorrhizal patterns in nature. In particular, 1 km2 is a relatively coarse 
spatial scale to quantify the average soil mycorrhizal richness expected 
per 100 m2. There can be large landscape heterogeneity in a pixel of 
this size, and soil fungal sampling is usually restricted to a smaller col-
lection grid and sequencing <1 g of soil. Currently, 1 km2 is the highest 
spatial resolution possible for making reliable global predictions given 
the coverage of relevant covariate layers, but this technical limitation 
will be overcome as more global environmental datasets are created at 
250-m and 30-m resolution, closer to the scale of field-sampling meth-
ods. We are also actively exploring how much within-pixel variation 
affects model accuracy as part of an ongoing effort to independently 
ground-truth these spatial predictions. Ground-truth validation is 
particularly important for the following regions: (1) under-sampled 
environments poorly represented in the model; (2) regions with high 
uncertainty despite good training data coverage; (3) areas with high 
landscape-related heterogeneity (for example, steep mountains); and 
(4) areas that are particularly vulnerable to rapid climate change and 
habitat loss from human activities.

Given the importance of these organisms for the productivity of 
ecosystems and the functioning of landscapes, it is surprising that 
mycorrhizal diversity remains highly underrepresented in conservation 
agendas. Explicit consideration of mycorrhizal biodiversity hotspots 
like those identified here can help direct and implement conserva-
tion strategies towards protecting the most diverse and endangered 
underground ecosystems.
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Methods

Fungal data
Fungal occurrence records were generated from the data mining of 
published ITS and SSU sequencing studies collected for the GlobalFungi 
and GlobalAMFungi databases (see previous studies6,8 for details) and 
the ITS region from full-length sequences in the Global Soil Mycobiome 
consortium database7. For EcM occurrences used in this study, we con-
sidered only samples of the ITS2 barcode deposited in the GlobalFungi 
dataset as this marker is less biased by length variability compared with 
ITS1 (refs. 56,57). Moreover, ITS2 is better represented in the source 
database and ITS1 samples failed technical validation (see below). In 
brief, raw sequences and metadata from 255 ITS studies (representing 
the fourth release of the GlobalFungi database) were processed using an 
established bioinformatic pipeline that incorporates sequence quality 
checks, extraction of full ITS2 fungal regions using ITSx (v.1.1.2)58 and 
clustering into OTUs at 97% similarity level with subsequent exclu-
sion of global singletons and chimeric sequences using USEARCH 
(v.11.0.0667)59. We used BLASTN searches against UNITE (v.8.3, released 
10.5.2021) to assign putative taxonomy to non-singleton OTUs. Default 
BLAST parameters were used, and representative sequences were con-
sidered to belong to the closest BLAST hit genera in the case of >92% 
similarity and >95% coverage. Considering that the majority of EcM 
fungal genera do not include species belonging to other functional 
guilds, we found that these BLAST results criteria were reasonable. 
We excluded OTUs represented by sequences with e value > 10–50. The 
resulting OTU table with taxonomy assignments was compared against 
the FungalTraits database (v.1.1) to subset EcM fungi60.

In early tests, we used the ITS dataset to model AM fungi, but their 
low abundance detected from using this target region was leading to 
clearly erroneous spatial predictions (for example, zero AM species 
predicted in regions known to be dominated by AM vegetation). As a 
result, SSU data from the GlobalAMFungi database were used to esti-
mate AM fungal species richness8. In brief, raw sequences and metadata 
from 45 SSU studies (representing the first release of the GlobalAM-
Fungi database) were subjected to sequence quality checks, trimming 
of the sequences to the V4 region of the SSU and assignment of the 
sequences to VT from the MaarjAM database (v.5.6.2019 release)61. 
We also used BLASTN with a required sequence coverage of ≥98% and 
sequence similarity ≥97%, based on the most recent release of type 
sequences of VT. VT were defined on the basis of phylogenetic group-
ing of SSU sequences at roughly species-level diversity (which may 
result in conservative taxonomic designations of AM fungal taxa55,62). 
Molecular identification based on VT is typically used for AM fungal 
metabarcoding studies using the SSU region, and OTUs are more tra-
ditionally used for general fungal community sequencing (including 
EcM fungi) based on the ITS region. Both VT and OTUs are commonly 
used to approximate species-level assignments in sequencing studies 
of mycorrhizal fungi. The EcM OTU data used for this analysis is the 
result of clustering of GlobalFungi sequences followed by taxonomic 
assignment. By contrast, the AMF pipeline results in more conservative 
estimates of diversity, as SSU sequences are assigned to representative 
VT using stringent BLAST parameters. This results in the discarding of 
sequences without a good match to these known VT, which is necessary 
to filter non-fungal sequences (for example, Annelids) but also prob-
ably removes undescribed AM fungal taxa. In total, 2.8 billion fungal 
sequences were processed across 24,982 samples, which identified 
332 VT of AM fungi (encompassing 86% of defined VT in the MaarjAM 
database) and 164,439 EcM fungal OTUs.

Richness estimates
We used analytical estimators for the rarefaction and extrapolation 
of species richness to measure the number of mycorrhizal species 
(OTUs or VT) in each sample63. This approach creates a sequencing 
depth-based rarefaction and extrapolation sampling curve (that is, a 

sample-specific species accumulation curve), with diversity estimates 
and 95% confidence intervals calculated at curve asymptotes (using 
the R package iNEXT64). Extrapolation end points were computed as 
twice the sequencing depth for each sample (default setting). Use of 
the rarefaction and extrapolation approach to estimate mycorrhizal 
richness enables a robust comparison of mycorrhizal patterns across 
studies of multiple sequencing technologies (although variation in 
error rates may persist), primer sets and sequencing intensities. The 
extrapolated richness estimates here are within similar ranges to past 
studies that estimated global diversity of mycorrhizal fungi26,39. Moreo-
ver, sample richness values were highly consistent among 96%, 97% and 
98% clustering similarity thresholds (Supplementary Fig. 4).

We removed outliers in mycorrhizal richness estimates before spatial 
modelling. Two Australian studies with ITS samples from desert and 
Mediterranean biomes had unusually high EcM OTU richness esti-
mates and standard deviations (two orders of magnitude higher than 
other Australian ecoregions65,66). Moreover, these studies have previ-
ously been identified as potentially inaccurate based on a recent data-
base comparison6. All samples from these two studies were removed 
(n = 2,070). We then filtered samples by biome by removing estimated 
richness values that were more than five times the interquartile range 
higher than the biome-level median estimate. We only filtered values at 
the highest end of the distribution to avoid potentially removing ‘true’ 
estimates of low or zero mycorrhizal richness at a given location. See 
Supplementary Table 1 for a summary of outliers removed per biome.

We also calculated rarity-weighted richness to estimate the relative 
endemism of mycorrhizal fungal communities. Using samples from the 
outlier filtered dataset (see above), we created a species-level preva-
lence score as the number of samples for which each OTU or VT occurs 
and then summed the inverse prevalence score of all species present in 
each sample67. This rarity metric is useful for identifying site endemism 
or areas with a high concentration of rare taxa23. Rarity-weighted rich-
ness was originally used with a geographically unbiased dataset for 
which each pixel contained information on bird observations67, but 
has since proven useful in other contexts to predict patterns of relative 
species endemism32,68. To account for the possibility that geographi-
cally uneven sampling efforts affect fungal species prevalence scores 
and biases predictions of fungal endemism, we simulated a global 
high-sampling scenario for rarity spatial models (see below).

Geospatial modelling, validation and analysis
Spatial predictions of mycorrhizal fungal richness and rarity were cre-
ated using a random forest modelling approach (modified from ref. 69). 
We first sampled a collection of >72 global environmental covariates at 
each of the locations in the dataset. To reduce overfitting and variance 
inflation, we removed highly correlated variables such that the final 
set of predictors comprised 24 environmental variables. These con-
tained macroclimatic, soil texture and physicochemical information, 
vegetation, radiation and topographical indices and anthropogenic 
variables. Details of all predictors, including descriptions, units and 
source information, are previously described70 and provided in Supple-
mentary Table 2. Variables describing soil structure and physicochemi-
cal properties were obtained from SoilGrids71, limited to the upper 
5 cm of soil. Climate information (that is, mean annual temperature, 
annual precipitation, monthly maximum temperature and precipita-
tion seasonality) was obtained from CHELSA72, and climate stability 
over palaeoecological timescales was obtained from the Climate Sta-
bility Index73. Spectral vegetation indices (that is, MODIS NPP product 
MOD17A3HGF V6.1, averaged annually) were obtained from the Google 
Earth Engine Data Catalogue. We used aboveground biomass data 
from CDIAC74. We used EarthEnv75,76 to collect consensus land cover 
information (including human development percentage) and eight 
topographical layers that capture a broad range of complex terrain 
features (for example, geographical isolation). The predicted plant 
diversity layer was obtained from a previous study77. The potential 
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evapotranspiration layer was obtained from CGIAR78. Resolve Ecore-
gion classifications were used to categorize sampling locations into 
biomes79. All spatial covariate layers were reprojected and resampled 
to a unified pixel grid in EPSG:4326 (WGS84) at 30-arcsec resolution 
(approximately 1 km2 at the equator). Areas covered by permanent 
snow or ice (for example, the Greenland ice cap and glaciated moun-
tain ranges, which were identified using SoilGrids71), barren land cover 
(sparsely vegetated regions defined in EarthEnv75,76) and highly urban 
and built-up areas were excluded from the analyses. Antarctic areas 
were excluded from analyses owing to limited coverage of covariate 
layers in the region.

To harmonize the data across the different experimental approaches 
of the original studies, we included six types of project-specific vari-
ables. This included two continuous variables (sample area and soil 
mass for DNA extraction) and the following four categorical variables: 
sequencing platform (Illumina, IonTorrent, PacBio, 454Roche and 
DNBSEQ-G400); target gene region (ITS1 and ITS2); sample type (soil, 
topsoil and rhizosphere); and primer set (37 different kinds). As an 
intermediate step, we created random forest spatial models (described 
below) to derive predicted values of mycorrhizal richness for com-
parison to observed data at the same geolocation. We filtered samples 
from the categorical project-specific variables that failed technical 
validation by comparing observed with predicted richness trends 
(failures were defined by zero correlation). This process removed all 
DNBSEQ-G400 samples (n = 3,738), all ITS1 samples (n = 33; these sam-
ples also had corresponding ITS2 sequence data that were retained) 
and 14 different primer sets (total n = 809), which were filtered before 
running the final models. To create spatial predictions, we harmonized 
the project-specific variables to the following most common levels: 
sample area = 100 m2; soil mass for DNA extract = 0.5 g; sequencing 
platform = Illumina; target gene = ITS2 (implicit because ITS1 sam-
ples were removed); sample type = soil; and primer set = ITS3–ITS4 for 
EcM. Before modelling, all categorical project-specific variables were 
transformed to binary variables (that is, one-hot encoding or dummy 
variables). See Supplementary Figs. 5–10 for more details on technical 
validation and data filtering.

After outlier removal and validation, the SSU dataset contained 3,234 
samples (332 total VT) for AM fungal analysis, and the ITS dataset had 
17,519 samples (41,086 total OTUs) for EcM fungal analysis. To create the 
training datasets and to reduce potential overfitting, we used only dis-
tinct observations of mycorrhizal fungal richness (that is, samples with 
non-identical richness or rarity values). This meant that when multiple 
samples fell within the same 1-km2 pixel, we removed duplicate richness 
estimates to ensure that each observation contributed equally to the 
learning process of the model (multiple identical observations caused 
the random forest models to overfit towards those combinations of 
richness levels and environmental variables). Using only distinct obser-
vations enabled us to retain important within-pixel variation rather than 
aggregating across multiple richness estimates per pixel. To deal with 
the zero values in the dataset, rarefied richness values were log10[x + 1] 
transformed before modelling. In the random forest models, we fixed 
the number of trees at 250 and explored different combinations of 
hyperparameters by varying the number of variables considered at 
each split (4, 6, 8, 10 or 12) and the minimum number of samples per 
leaf (2, 4, 6, 8, 10 or 12). In total, 30 hyperparameter combinations were 
tested for each AM and EcM response variable.

There is ongoing debate about the best methodology for validating 
spatial models80–83. As a result, we tested each model using both ran-
dom cross-validation and k-fold nearest neighbour distance matching 
cross-validation (kNNDM)84. Random folds were assigned stratified 
per biome to ensure equal coverage of each fold. For both AM and 
EcM, the final predictions are an ensemble (mean) of the top ten best 
performing models based on coefficient of determination (R2) with 
kNNDM ten-fold cross validation. This approach resulted in the fol-
lowing predictive accuracy metrics for richness models: AM random 

cross-validated R2 = 0.61; AM kNNDM cross-validated R2 = 0.20; EcM 
random cross-validated R2 = 0.63; and EcM kNNDM cross-validated 
R2 = 0.28 (Extended Data Fig. 9a). The predictive accuracy metrics for 
rarity models were as follows: AM random cross-validated R2 = 0.56; 
AM kNNDM cross-validated R2 = −2.55; EcM random cross-validated 
R2 = 0.61; and EcM kNNDM cross-validated R2 = 0.19 (Extended Data 
Fig. 9b). Overall, these performance estimates were similar to (or 
exceeded) the predictive accuracy of global machine-learning models 
for other soil organisms69,85,86. The poor performance of the AM fungal 
rarity model based on kNNDM cross-validation suggests there may be 
spatial or environmental structures in the dataset that the model is 
unable to detect, which is possible if the VT dataset fails to sufficiently 
capture AM fungal endemism patterns because of conservative taxo-
nomic assignments from the AM fungal reference database61. We used 
the SHAP algorithm to interpret the importance and directionality of 
environmental features38. Standard feature importance algorithms, 
like the ones implemented in random forest or boosted regression tree 
models, measure feature importance as a change in model performance 
and are more susceptible to feature collinearity. By contrast, SHAP han-
dles feature collinearity relatively well and is based on the magnitude 
of feature contribution. We selected SHAP as the most suitable method 
here because of the possibility of feature collinearity among the envi-
ronmental predictors and because we were interested in the effect of 
the features on the predicted value (as opposed to the effect on model 
error) to interpret the importance and directionality of the features.

As we expected the model performance to decrease with distance to 
training locations, we also performed spatially buffered leave-one-out 
cross-validation (SLOO-cv)80, a computationally intensive approach in 
which a separate model is trained for every unique location in the data-
set and leaving out locations in a range of buffer sizes. At larger buffer 
sizes (that is, >500 km), SLOO-cv R2 values were in line with kNNDM 
cross-validation R2 values. To transform these findings into a visual 
representation, we plotted the R2 values against the distance to the 
nearest sampling location to create a spatial product (Supplementary 
Fig. 3). The resulting map was consistent with our previously described 
extrapolation map.

To generate a spatial understanding of our predictive accuracy, we 
created 100 bootstrap samples by resampling the training datasets 
with replacement using biome-based stratification. Leveraging the 
hyperparameter settings of the best performing random forest model, 
we generated 100 global prediction images. These were subsequently 
used to calculate a bootstrap coefficient of variation (derived by divid-
ing the standard deviation by the mean) and 95% confidence intervals 
for each pixel (Extended Data Figs. 7 and 8). To locate environmental 
conditions and corresponding geographical regions that are under-
represented in the training data, we first converted the data into the 
principal component space. We then selected the first 13 and 14 axes 
that cumulatively accounted for 90% of the total variance for the mod-
els for AM and EcM, respectively. We evaluated whether raster pixels 
were associated with environmental conditions internal or external 
to the convex hull circumscribing the data points along each pairwise 
combination of principal component axes. We defined the degree of 
model extrapolation as the proportion of total pairwise combinations 
for which a pixel lies outside the corresponding convex hull. Finally, 
we combined this environmental extrapolation data with a map of 
geographical distance between sampling locations (distance and 
environmental extrapolation maps were combined in a 2:1 ratio, after 
scaling each from 0 to 1) to produce a global spatial assessment of the 
representativeness of our datasets (Extended Data Figs. 7 and 8). The 
extrapolation map was then used to mark pixels that were most under-
represented by the training data using a 5% extrapolation cut-off value 
(that is, areas with <95% coverage in training data space).

To explore possible spatial dependency in the data, we fit semi- 
variogram models per mycorrhizal type on richness estimates and 
model residuals using the R package automap (v.1.1-9)87. For AM fungi, 



we observed autocorrelation in the extrapolated richness data up to 
about 900 km; for EcM fungi this range reached about 550 km. This level 
of spatial autocorrelation in response variables is unsurprising given 
the scale of our georeferenced datasets, similar to a recent analysis 
showing that spatial weights of around 800 km were best at handling 
spatial autocorrelation in a global plant diversity dataset77. For model 
residuals, semi-variograms showed weak, although significant, spa-
tial dependency for both AM and EcM fungal data (Supplementary 
Fig. 2). We then performed a Global Moran’s I-test with permutations 
calculated using the R package sfdep88, including five nearest points as 
neighbours and a Gaussian kernel function for building spatial weight 
matrices. For the richness estimates, spatial autocorrelation was posi-
tive and highly significant (Moran’s I of 0.71 for AM and 0.64 for EcM), 
whereas spatial autocorrelation was low in model residuals for both 
fungal types (Moran’s I of 0.11 for AM and 0.23 for EcM; Supplementary 
Fig. 1), similar to a previous study that reported limited effects of geo-
graphical distance on fungal alpha diversity39. To incorporate spatial 
processes into the prediction model, we applied spatial eigenvector 
mapping using distance-based Moran’s eigenvector maps (dbMEMs)89. 
We calculated dbMEMs using the R package adespatial (v.0.3-21)90, 
with the custom function quickMEM91. The inclusion of dbMEMs in the 
modelling approach showed mycorrhizal hotspots predicted in the 
same areas but reduced some finer-scale variation in richness predic-
tions in the non-spatial models (Supplementary Fig. 10). These results 
led us to conclude that the models without dbMEMs capture the most 
variation; however, there might be some fine-scale spatial processes 
that are not explained for AM fungi here.

We evaluated how uneven sampling density might change rarity 
patterns by comparing model predictions that used current sampling 
intensity with those that used a simulated globally homogenous and 
high-sampling intensity, as previously described32. We created 1-km2 
resolution sampling intensity layers for the SSU and ITS training data-
sets using kernel density interpolation from sample coordinates with 
a 5° radius and uniform decay rate in QGIS (v.3.40). These layers were 
rescaled 0−1 and included as covariates in the rarity random forest 
models to make empirical predictions of AM and EcM fungal rarity 
on the basis of the current distribution of sampling efforts. We then 
extrapolated rarity models under a global and equally high-sampling 
scenario by setting all pixels in the sampling intensity covariate layer 
to the maximum value of 1. Comparing patterns from the empirical and 
high-sampling rarity models showed where future sampling may reveal 
overlooked and under-realized hotspots of mycorrhizal fungal rarity32. 
For all analyses (for example, latitude trends and hotspot protections), 
we used the high-sampling rarity models to avoid biases in endemism 
predictions that were based on sampling intensity.

To measure how mycorrhizal richness and rarity varies with lati-
tude, predicted richness and rarity pixel values were averaged at every 
0.2 latitude degrees within 1°-wide longitude bands92 using functions 
in the R package Tidyverse (v.2.0.0)93. Correlations between latitude 
and estimated mycorrhizal richness and rarity of samples are also 
provided in Extended Data Fig. 2. Mycorrhizal hotspots were defined 
by setting a cut-off at the 95th percentile of predicted richness values. 
These hotspot pixels were then overlaid with the World Database of 
Protected Areas cropped to spatial predictions here (WDPA; www.
protectedplanet.net)35 before calculating the total extent to which 
mycorrhizal hotspots in different biomes fall within current pro-
tected area delineations. Hotspot overlap with protected areas was 
calculated for each IUCN management category (terrestrial WDPA 
categories I–VI and unassigned). To understand mycorrhizal hot-
spot protections relative to other organisms, we compiled recently 
published spatial data on the species diversity of vascular plants25, 
trees94, ants32 and four groups of vertebrates (amphibians, birds, 
mammals and reptiles; IUCN95). The same hotspot analysis described 
above was applied to these spatial layers, and the total amount of rich-
ness and rarity centre overlap in protected areas was calculated for 

comparisons. All spatial analyses were based on raster data in Equal 
Earth projection at 1-km2 pixel resolution, and maps were visualized 
in Robinson projection.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data are archived on Zenodo (https://doi.org/10.5281/zenodo. 
14871588)37. Full map predictions (1-km2 global GeoTIFFs) are available 
after submitting a data request (https://spun.earth/data-request). 
Links to spatial data layers used for modelling are listed in Supplemen-
tary Table 2. The FungalTraits database (v.1.2; https://doi.org/10.1007/
s13225-020-00466-2) and the MaarjAM database (v.5.6.2019; https://
maarjam.ut.ee/) were used for fungal bioinformatic analyses. Fungal 
data used in this study are available from previous publications6–8,60.

Code availability
Code is available from GitHub (https://github.com/SocietyPro-
tectionUndergroundNetworks/richness_maps/) and permanently 
archived in the public Zenodo repository (https://doi.org/10.5281/
zenodo.14871588)37.
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Extended Data Fig. 1 | Sample locations and mycorrhizal rarity trends by 
biome. Distribution of sites and rarity-weighted richness (RWR) estimates for 
A) arbuscular mycorrhizal (AM) fungi and B) ectomycorrhizal (EcM) fungi. 
Mycorrhizal rarity patterns across terrestrial biomes are shown in boxplots 
(Mangroves, Flooded grasslands, and Rock/Ice biomes not shown due to few 
samples in both datasets). Global distributions of relative rarity are shown in 

density curves above biome-level boxplots. Boxplots indicate the median 
(center line), first and third quartiles (lower and upper box edges), and 1.5× IQR 
(box whiskers). Relative rarity data is unitless and shown as log-transformed for 
visualization. See Main Text for details on RWR calculation. Points shown here 
are all samples that passed quality control checks and used as training data for 
richness models.
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Extended Data Fig. 2 | Observed mycorrhizal richness and rarity variation 
with latitude. Plots show A) AM fungi and B) EcM fungi. Points are the rarefied 
mycorrhizal richness values (estimated from samples) or rarity-weighted 

richness in relation to the latitude position where samples were collected. 
Curves show model fit based on a quadratic linear regression (second order 
polynomial).



Extended Data Fig. 3 | Spatial predictions of how increased sampling could 
change the global distribution of mycorrhizal fungal rarity hotspots. We 
built machine learning models of A) AM and B) EcM fungal rarity under two 
sampling scenarios. We first created empirical predictions (yellow) based on 
sample rarity values and the current geographic distribution of sample density 
(i.e., more concentrated sampling in North America, Europe, and Asia). We then 
built a second predictive model that simulated ‘high-sampling’ efforts (red) by 

setting the sampling density covariate layer to the global max value in all pixels. 
Mapping predicted rarity hotspots under these different scenarios shows areas 
that may fall out of the top 5% of global endemism centers under increased 
sampling (yellow), hotspot predictions that are robust to future sampling efforts 
(orange), and places where future sampling is likely to reveal undiscovered rarity 
hotspots (red).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | SHapley Additive exPlanations (SHAP) value  
plots showing the magnitude and direction of relationships between 
environmental predictors and mycorrhizal richness. For A) AM fungi and B) 
EcM fungi, variables at the top of the graph are the most important predictors 
with decreasing importance down the figure. Bar graphs (left) show mean 
absolute SHAP values that measure the overall magnitude of each covariate  

on model predictions in units of fungal richness. Beeswarm plots (right) show  
the directionality of SHAP values, with points left of the zero–line indicating a 
negative relationship between mycorrhizal richness and a given predictor. The 
red/blue color gradient represents fungal richness values associated with a 
predictor.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | SHapley Additive exPlanations (SHAP) value  
plots showing the magnitude and direction of relationships between 
environmental predictors and mycorrhizal rarity. For A) AM fungi and B) 
EcM fungi, variables at the top of the graph are the most important predictors 
with decreasing importance down the figure. Bar graphs (left) show mean 
absolute SHAP values that measure the overall magnitude of each covariate on 

model predictions in units of fungal rarity-weighted richness. Beeswarm plots 
(right) show the directionality of SHAP values, with points left of the zero–line 
indicating a negative relationship between mycorrhizal rarity and a given 
predictor. The red/blue color gradient represents fungal richness values 
associated with a predictor.
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Extended Data Fig. 6 | Average model uncertainty and extrapolation 
per biome. Model uncertainty was measured as the coefficient of 
variation across bootstrapped model predictions for A) richness models 
and B) rarity models. C) Model extrapolation was quantified through 
principal component analysis of the training data (see Methods in main 
text). Note: only one extrapolation figure is shown for both richness and 
rarity models since these were built using the same geo-located sample 
coordinates from which our extrapolation approach is based. Points show 
mean, bars show standard deviation.



Extended Data Fig. 7 | Maps showing geographic distribution of model 
uncertainty and extrapolation for mycorrhizal fungal richness models. 
Model uncertainty and extrapolation shown for A) AM fungi richness and B) 
EcM fungi richness predictions. Brighter colors indicate areas with relatively 

higher coefficient of variation across bootstrapped predictions (which  
we define as model uncertainty), or higher extrapolation due to poor 
environmental and spatial representation in the richness training data.
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Extended Data Fig. 8 | Maps showing geographic distribution of model 
uncertainty and extrapolation for mycorrhizal fungal endemism models. 
Model uncertainty and extrapolation shown for A) AM fungi rarity-weighted 
richness and B) EcM fungi rarity-weighted richness predictions. Brighter colors 

indicate areas with relatively higher coefficient of variation across bootstrapped 
predictions (which we define as model uncertainty), or higher extrapolation due 
to poor environmental and spatial representation in the rarity-weighted richness 
training data.



Extended Data Fig. 9 | Predicted versus observed plots of mycorrhizal 
richness and rarity-weighted richness (rwr) showing the model fit to  
the training data. For A) AM fungi and B) EcM fungi, the X axis represents 
observed data used to train the machine learning model and the Y axis shows 
predicted values from the model. Colors indicate the density of points in the 

dataset. Solid lines show a 1-1 relationship between predicted versus observed 
values, indicating a perfect fit and 100% predictive accuracy. The dashed line 
shows the actual fit between the observed and predicted values. Axes scales 
are log-transformed.
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